Learn More
We show that methylated lysine 9 of histone H3 (Me9H3) is a marker of heterochromatin in divergent animal species. It localises to both constitutive and facultative heterochromatin and replicates late in S-phase of the cell cycle. Significantly, Me9H3 is enriched in the inactive mammalian X chromosome (Xi) in female cells, as well as in the XY body during(More)
Tri-methylated lysine 20 on histone H4 (Me(3)K20H4) is a marker of constitutive heterochromatin in murine interphase and metaphase cells. Heterochromatin marked by Me(3)K20H4 replicates late during S phase of the cell cycle. Serum starvation increases the number of cells that exhibit high levels of Me(3)K20H4 at constitutive heterochromatin. Me(3)K20H4 is(More)
We have used two different experimental approaches to demonstrate topological separation of parental genomes in preimplantation mouse embryos: mouse eggs fertilized with 5-bromodeoxyuridine (BrdU)-labeled sperm followed by detection of BrdU in early diploid embryos, and differential heterochromatin staining in mouse interspecific hybrid embryos. Separation(More)
Certain genes are expressed either from the maternal or the paternal genome as a result of genomic imprinting, a process that confers functional differences on parental genomes during mammalian development. In this study we focus on the cumulative effects of imprinted genes on brain development by examining the fate of androgenetic (Ag: duplicated paternal(More)
X-linked retinitis pigmentosa (XLRP) results from mutations in at least two different loci, designated RP2 and RP3, located at Xp11.3 and Xp21.1, respectively. The RP3 gene was recently isolated by positional cloning, whereas the RP2 locus was mapped genetically to a 5-cM interval. We have screened this region for genomic rearrangements by the YAC(More)
The parental origin of chromosomes is critical for normal development in the mouse because some genes are imprinted resulting in a predetermined preferential expression of one of the alleles. Duplication of the paternal (AG: androgenones) or maternal (GG/PG: gynogenones/parthenogenones) genomes will result in an excess or deficiency of gene dosage with(More)
DNA methylation is essential for the control of a number of biological mechanisms in mammals [1]. Mammalian development is accompanied by two major waves of genome-wide demethylation and remethylation: one during germ-cell development and the other after fertilisation [2] [3] [4] [5] [6] [7]. Most previous studies have suggested that the genome-wide(More)
Interspecific hybridization between closely related species is commonly associated with decreased fertility or viability of F1 hybrids. Thus, in mouse interspecific hybrids, several different hybrid sterility genes that impair gametogenesis of the male hybrids have been described. We describe a novel effect in hybrids between different mouse species that(More)
Imprinted genes in mammals are expressed from only one of the parental chromosomes, and are crucial for placental development and fetal growth. The insulin-like growth factor II gene (Igf2) is paternally expressed in the fetus and placenta. Here we show that deletion from the Igf2 gene of a transcript (P0) specifically expressed in the labyrinthine(More)