Learn More
The xanthophyll cycle represents one of the important photoprotection mechanisms in plant cells. In the present review, we summarize current knowledge about the violaxanthin cycle of vascular plants, green and brown algae, and the diadinoxanthin cycle of the algal classes Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. We address the(More)
During the last years significant progress was achieved in unraveling molecular characteristics of the thylakoid membrane of different diatoms. With the present review it is intended to summarize the current knowledge about the structural and functional changes within the thylakoid membrane of diatoms acclimated to different light conditions. This aspect is(More)
In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show(More)
The photosynthetic antenna system of diatoms contains fucoxanthin chlorophyll a/c binding proteins (FCPs), which are membrane intrinsic proteins showing high homology to the light harvesting complexes (LHC) of higher plants. In the present study, we used a mild solubilization of P. tricornutum thylakoid membranes in combination with sucrose density gradient(More)
The lipid composition of algae is crucial for numerous structural and physiological aspects, e.g. the integrity of the photosynthetic complexes and the functionality of membrane-embedded processes as the photosynthetic electron transport in thylakoids or the mitochondrial respiration. In this paper the lipid composition of the organic extracts of the green(More)
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact(More)
Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome.(More)
The diatom algae, responsible for at least a quarter of the global photosynthetic carbon assimilation in the oceans, are capable of switching on rapid and efficient photoprotection, which helps them cope with the large fluctuations of light intensity in the moving waters. The enhanced dissipation of excess excitation energy becomes visible as(More)
In their natural environment plants and algae are exposed to rapidly changing light conditions and light intensities. Illumination with high light intensities has the potential to overexcite the photosynthetic pigments and the electron transport chain and thus induce the production of toxic reactive oxygen species (ROS). To prevent damage by the action of(More)