Reiko Tanaka

Learn More
The progression of Pneumocystis carinii pneumonia was temporally monitored and quantified by real-time polymerase chain reaction of P. carinii-specific DNA in oral swabs and lung homogenates from infected rats. DNA levels correlated with the number of P. carinii organisms in the rats' lungs, as enumerated by microscopic methods. This report is the first of(More)
Human T-cell leukemia virus type 1 (HTLV-1) causes both neoplastic and inflammatory diseases, including adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Because these life-threatening and disabling diseases are not yet curable, it is important to prevent new HTLV-1 infections. In this study, we have established(More)
CD83, a cell surface glycoprotein that is stably expressed on mature dendritic cells, can be transiently induced on other hematopoietic cell lineages upon cell activation. In contrast to the membrane form of CD83, soluble CD83 appears to be immunosuppressive. In an analysis of the phenotype of leukemic CD4+ T cells from patients with adult T-cell leukemia(More)
Because dendritic cells (DCs) play a critical role in the regulation of adaptive immune responses, they have been ideal candidates for cell-based immunotherapy of cancers and infections in humans. Generally, monocyte-derived DCs (MDDCs) were generated from purified monocytes by multiple steps of time-consuming physical manipulations for an extended period(More)
OX40 is a member of the tumor necrosis factor receptor family that is expressed primarily on activated CD4+ T cells and promotes the development of effector and memory T cells. Although OX40 has been reported to be a target gene of human T-cell leukemia virus type-1 (HTLV-1) viral transactivator Tax and is overexpressed in vivo in adult T-cell leukemia(More)
Human T-cell leukemia virus type 1 (HTLV-1) causes both neoplastic and inflammatory diseases: adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/ tropical spastic paraparesis (HAM/TSP). Since these disabling and/or life threatening diseases are not yet curable , it is important to prevent new infections. In this study, we have established a simple(More)
Neutralizing antibodies against human T cell leukemia virus type-I (HTLV-1) eradicate HTLV-1 in combination with autologous peripheral blood mononuclear cells via antibody-dependent cellular cytotoxicity while preventing new infection In order to establish a basis for vaccine development against human T cell leukemia virus type-I (HTLV-1), we have evaluated(More)
BACKGROUND Small chemical compounds which target chemokine receptors have been developed against human immunodeficiency virus type 1 (HIV-1) and are under investigation for use as anti-HIV-1 microbicides. In addition, monoclonal antibodies (mAbs) against chemokine receptors have also been shown to have anti-HIV-1 activities. The objective of the present(More)
We have previously reported that immunization of the severe combined immunodeficiency (SCID) mice reconstituted with human peripheral blood mononuclear cells (PBMC) (hu-PBL-SCID mice) with inactivated human immunodeficiency virus type-1 (HIV-1)-pulsed-autologous dendritic cells (HIV-DC) elicits HIV-1-reactive CD4(+) T cells that produce an as yet to be(More)
The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which(More)