Learn More
We reviewed the methods of nonheme-iron histochemistry with special focus on the underlying chemical principles. The term nonheme-iron includes heterogeneous species of iron complexes where iron is more loosely bound to low-molecular weight organic bases and proteins than that of heme (iron-protoporphyrin complex). Nonheme-iron is liberated in dilute acid(More)
The lateral suprasylvian visual area (LS) is known to have numerous interconnections with visual cortical areas as well as with subcortical structures implicated in visually-guided behaviors. In contrast, little data is available regarding connections within the LS itself. In order to obtain information about intra-areal connections and to re-investigate LS(More)
BACKGROUND Visual information conveyed through the extrageniculate visual pathway, which runs from the retina via the superior colliculus (SC) and the lateral posterior nucleus (LPN) of the thalamus to the higher visual cortex, plays a critical role in the visual capabilities of many mammalian species. However, its functional role in the higher visual(More)
The purpose of this study was to investigate morphological characteristics of the synaptic relations of choline acetyltransferase (ChAT)-positive terminals that are made with a variety of post-synaptic profiles in the lateralis medialis-suprageniculate nuclear complex (LM-Sg) using ChAT, gamma-aminobutyric acid (GABA) and glutamate immunohistochemistry in(More)
It is generally known that the nucleus of the optic tract (NOT) subserves visuomotor relations between the retina and preoculomotor structures as the only subcortical pathway mediating optokinetic responses (OKR) in mammals. We have examined the projections from the retina and visual cortical areas (areas 17, 18a and 18b) to NOT using tracers (wheat germ(More)
The granular retrosplenial cortex (GRS) in the rat has a distinct microcolumn-type structure. The apical tufts of dendritic bundles at layer I, which are formed by layer II neurons, co-localize with patches of thalamic terminations from anteroventral (AV) thalamic nucleus. To further understand this microcolumn-type structure in the GRS, one of remaining(More)
Clustered protocadherins (cPcdhs) comprising cPcdh-α, -β, and -γ, encode a large family of cadherin-like cell-adhesion molecules specific to neurons. Impairment of cPcdh-α results in abnormal neuronal projection patterns in specific brain areas. To elucidate the role of cPcdh-α in retinogeniculate projections, we investigated the morphological patterns of(More)
Perfusion-Perls and -Turnbull methods supplemented by the intensification with 3,3′-diaminobenzidine (+ DAB) enabled stronger and more extensive staining of nonheme iron than the Perls + and Turnbull + DAB methods carried out on tissue sections fixed with 10% formalin in 0.9% saline or PBS. The section- and perfusion-Perls + DAB methods are not specific for(More)
Redox-active non-heme iron catalyzes hydroxyl radical $${\text{OH}}^{\raise0.145em\hbox{${\scriptscriptstyle \bullet}$}} $$ generation through Haber–Weiss reaction. Oxidative tissue damage by $${\text{OH}}^{\raise0.145em\hbox{${\scriptscriptstyle \bullet}$}} $$ has been suggested in the development of stress-induced gastric lesion. Using highly sensitive(More)
Iron in the brain is utilized for cellular respiration, neurotransmitter synthesis/degradation, and myelin formation. Iron, especially its ferrous form, also has the potential for catalyzing the Fenton reaction to generate highly cytotoxic hydroxyl radicals. The amount of iron in the brain must therefore be strictly controlled. In this study, we focused on(More)