Reiji Fujimaki

Learn More
Dry evergreen forest (DEF) and dry deciduous dipterocarp forest (DDF) are major forest types extensively distributed in northeastern Thailand, exhibiting different nutrient cycling properties. This study aims to improve our understanding on the pattern of mass loss and nitrogen release from two categories of roots (fine, <2 mm and small, 2–5 mm) of Hopea(More)
Ingrowth cores in the field were used to compare fine root characteristics of hinoki cypress (Chamaecyparis obtusa) among rooting substrate in the form of needle leaf litter, decomposing organic material, and mineral soil. Fine root growth, morphology, arbuscular mycorrhizal (AM) associations, and tissue C and N concentration were determined. The inorganic(More)
We investigated the biomass, vertical distribution, and specific root length (SRL) of fine and small roots in a chronosequence of Japanese cedar (Cryptomeria japonica D. Don) plantations in Nara Prefecture, central Japan. Roots were collected from soil blocks up to 50 cm in depth in five plantations of differing age: 4, 15, 30, 41, and 88 years old.(More)
Soil inorganic nitrogen supply and fine root mass in the top layers of mineral soil (0–5 and 5–10 cm) were investigated at upper and lower sites of a cool temperate forest where Fagus crenata and Quercus crispula dominate. At both sites, soil inorganic nitrogen supply was greatest in the 0–5 cm layer. The predominant forms of soil inorganic nitrogen supply(More)
We investigated soil net nitrogen mineralization rate, above- and belowground biomass allocation, and nitrogen use in a Cryptomeria japonica plantation chronosequence. Total biomass accumulation showed an asymptotic accretion pattern, and the peak total biomass accumulation rate occurred approximately 30 years after afforestation. Soil net nitrogen(More)
Anthropogenic addition of reactive nitrogen (Nr) to the biosphere is increasing globally and some terrestrial ecosystems are suffering from a state of excess Nr for biological nitrogen (N) demand, termed N saturation. Here, we review the ecological risks in relation to N saturation and prospective responses to N saturation. Excess Nr increases the risks of(More)
The water chemistry of 51 headwater streams was studied in the Tanzawa Mountains, western fringe of Southern Kanto Plain, Japan. The relationships to soil N processes and catchment topography were also evaluated using a geographic information system with fine-scale map data. The average concentration of total dissolved N was 0.74 mg-N L−1, of which 95%(More)
Biomass allocation to fine roots often increases under soil nutrient deficiency, but the fine root biomass does not often increase in old stands, even under nutrient limitation. Therefore, in old stands, the morphology, anatomy, branching architecture and mycorrhization of fine roots may compensate efficiently for nutrient acquisition by the low fine root(More)
  • 1