Learn More
For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will(More)
We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and(More)
We have developed a software architecture for teams of robots and humans to jointly perform tightly coordinated tasks, such as assembly of structures in orbit or on planetary surfaces. While we envision that robots will autonomously perform such work in the future, the state of the art falls short of the capabilities necessary to handle all possible(More)
For the past three years, we have been running an experiment in web-based interaction with an autonomous indoor mobile robot. The robot, Xavier, can accept commands to travel to different offices in our building, broadcasting camera images as it travels. The experiment, which was originally designed to test a new navigation algorithm, has proven very(More)
This paper presents an architecture that enables multiple robots to explicitly coordinate actions at multiple levels of abstraction. In particular, we are developing an extension to the traditional three-layered robot architecture that enables robots to interact directly at each layer – at the behavioral level, the robots create distributed control loops;(More)
Space mission operations require flexible, efficient and reliable plan execution. In typical operations command sequences (which are a simple subset of general executable plans) are generated on the ground, either manually or with assistance from automated planning, and sent to the spacecraft. For more advanced operations more expressive executable plans(More)
In this paper we present recent advances in developing and validating the safeguarded teleoperation approach to time-delayed remote driving. This approach shares control of the rover using a command fusion strategy: In benign situations, users remotely drive the rover; in hazardous situations, a safeguarding system running on-board the rover overwrites user(More)
This dissertation presents the complete integrated planning, executing and learning robotic agent Rogue. Physical domains are notoriously hard to model completely and correctly. Robotics researchers have developed learning algorithms to successfully tune operational parameters. Instead of improving low-level actuator control, our work focusses instead at(More)