Learn More
Active endogenous transposable elements, useful tools for gene isolation, have not been reported from any legume species. An active transposable element was suggested to reside in the W4 locus that governs flower color in soybean. Through biochemical and molecular analyses of several revertants of the w4-m allele, we have shown that the W4 locus encodes(More)
Mutability of the w(4) flower color locus in soybean [Glycine max (L.) Merr.] is conditioned by an unstable allele designated w(4)-m. Germinal revertants, purple-flower plants, recovered among self-pollinated progeny of mutable flower plants were associated with the generation of necrotic root, chlorophyll-deficiency, and sterility mutations. Thirty-seven(More)
The soybean [Glycine max (L.) Merr.] chlorophyll-deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a nonsynonymous nucleotide substitution in the third exon of a Mg-chelatase subunit gene (ChlI1a) on chromosome 13. This gene was(More)
Chlorophyll-deficient mutants have been studied persistently to understand genetic mechanisms controlling metabolic pathways. A spontaneous chlorophyll-deficient lethal mutant was observed in self-pollinated progeny of a soybean cultivar " BSR 101 ". Observed segregation patterns indicated single-gene recessive inheritance for this lethal-yellow mutant. The(More)
We review recent work aimed at modelling species extinction over geological time. We discuss a number of models which, rather than dealing with the direct causes of particular extinction events, attempt to predict overall statistical trends, such as the relative frequencies of large and small extinctions, or the distribution of the lifetimes of species,(More)
In diploid segregation, each alternative allele has a 50% chance of being passed on to the offspring. Mutations in genes involved in the process of meiotic division or early stages of reproductive cell development can affect allele frequency in the gametes. In addition, competition among gametes and differential survival rates of gametes can lead to(More)
Common cutworm (CCW; Spodoptera litura Fabricius) is a major leaf-feeding pest in Asia. The focus of this study was to explore the genetic mechanism for resistance to CCW in terms of antibiosis and antixenosis through mapping QTL (Quantitative trait locus/loci) in soybean using two recombinant inbred line populations. Larva weight (LW) and pupa weight (PW)(More)
In soybean, the W4 gene encoding dihydroflavonol-4-reductase controls anthocyanin pigment biosynthesis in flowers. The mutant allele, w4-m, is characterized by variegated flowers and was evolved from the insertion of an endogenous transposable element, Tgm9, in intron II of the W4 gene. In the w4-m mutant line, reversion of the unstable allele from(More)
Soybean pollen-tube pathway transformation Shou et al. Abstract. The interest in developing tissue culture–independent genetic transformation methods for plants has been growing. The pollen-tube pathway transformation technique is one method; however, this method is controversial because it is difficult to duplicate and produces insufficient molecular(More)