Learn More
PURPOSE Acquisition of laser range scans of an organ surface has the potential to efficiently provide measurements of geometric changes to soft tissue during a surgical procedure. A laser range scanner design is reported here which has been developed to drive intraoperative updates to conventional image-guided neurosurgery systems. METHODS The scanner is(More)
Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy(More)
Biomechanical models that describe soft tissue deformation provide a relatively inexpensive way to correct registration errors in image-guided neurosurgical systems caused by nonrigid brain shift. Quantifying the factors that cause this deformation to sufficient precision is a challenging task. To circumvent this difficulty, atlas-based methods have been(More)
In this Phase I trial, patients' peripheral blood dendritic cells were pulsed with peptides eluted from the surface of autologous glioma cells. Three biweekly intradermal vaccinations of peptide-pulsed dendritic cells were administered to seven patients with glioblastoma multiforme and two patients with anaplastic astrocytoma. Dendritic cell vaccination(More)
Polymeric interstitial chemotherapy increases survival of humans with recurrent gliomas and animals with transplanted tumors in the brain, but the relationship between rates of drug release from polymer implants and drug concentration in brain tissue is unknown. This work presents a pharmacokinetic framework for application of this new modality of(More)
Compensating for intraoperative brain shift using computational models has shown promising results. Since computational time is an important factor during neurosurgery, a priori knowledge of the possible sources of deformation can increase the accuracy of model-updated image-guided systems. In this paper, a strategy to compensate for distributed loading(More)
Malignant gliomas are the most common and deadly brain tumors. Although their etiology remains elusive, recent studies have narrowed the search for genetic loci that influence risk. We examined variants implicated in recent cancer genome-wide association studies (GWAS) for associations with glioma risk in a US case-control study. Cases were identified from(More)
Clinical diagnosis and treatment decisions for a subset of primary human brain tumors, gliomas, are based almost exclusively on tissue histology. Approaches for glioma diagnosis can be highly subjective due to the heterogeneity and infiltrative nature of these tumors and depend on the skill of the neuropathologist. There is therefore a critical need to(More)
Conventional image-guided neurosurgery relies on preoperative images to provide surgical navigational information and visualization. However, these images are no longer accurate once the skull has been opened and brain shift occurs. To account for changes in the shape of the brain caused by mechanical (e.g., gravity-induced deformations) and physiological(More)
There is growing evidence that circadian disruption may alter risk and aggressiveness of cancer. We evaluated common genetic variants in the circadian gene pathway for associations with glioma risk and patient outcome in a US clinic-based case–control study. Subjects were genotyped for 17 candidate single nucleotide polymorphisms in ARNTL, CRY1, CRY2,(More)