Learn More
Brown rice is known to improve glucose intolerance and prevent the onset of diabetes. However, the underlying mechanisms remain obscure. In the current study, we investigated the effect of brown rice and its major component, γ-oryzanol (Orz), on feeding behavior and fuel homeostasis in mice. When mice were allowed free access to a brown rice-containing chow(More)
Objective In addition to excess visceral fat, lipid deposition in the liver and skeletal muscle has been implicated in the pathophysiology of type 2 diabetes and metabolic syndrome. This study was designed to explore the relationship between hepatic and muscular lipid deposition and visceral fat accumulation in 105 middle-aged men with metabolic syndrome.(More)
Endoplasmic reticulum (ER) stress is profoundly involved in dysfunction of β-cells under high-fat diet and hyperglycemia. Our recent study in mice showed that γ-oryzanol, a unique component of brown rice, acts as a chemical chaperone in the hypothalamus and improves feeding behavior and diet-induced dysmetabolism. However, the entire mechanism whereby(More)
This study was initiated with the isolation of influenza A and B viruses from clinical throat swabs in both fertile chicken eggs (egg) and MDCK cells, which were used in subsequent vaccine production in the above two hosts. On the basis of haemagglutination-inhibiting (HI) tests, immune mouse sera from mice vaccinated with MDCK cell-derived vaccines(More)
BACKGROUND AND PURPOSE γ-Oryzanol, derived from unrefined rice, attenuated the preference for dietary fat in mice, by decreasing hypothalamic endoplasmic reticulum stress. However, no peripheral mechanisms, whereby γ-oryzanol could ameliorate glucose dyshomeostasis were explored. Dopamine D2 receptor signalling locally attenuates insulin secretion in(More)
  • 1