Learn More
We propose a new type of optical waveguide that consists of a sequence of coupled high-Q resonators. Unlike other types of optical waveguide, waveguiding in the coupled-resonator optical waveguide (CROW) is achieved through weak coupling between otherwise localized high-Q optical cavities. Employing a formalism similar to the tight-binding method in(More)
Five different Alzheimer mutations of the beta-amyloid precursor protein (APP) were expressed in neurons via recombinant herpes simplex virus (HSV) vectors, and the levels of APP metabolites were quantified. The predominant intracellular accumulation product was a C-terminal fragment of APP that co-migrated with the protein product of an HSV recombinant(More)
Using both the tight-binding approximation and the finite-difference time domain method, we analyze two types of coupled-resonator optical waveguide (CROW), a coupled-microdisks waveguide and a waveguide composed of coupled defect cavities in a two-dimensional photonic crystal. We find that the dispersion relation of the CROW band can be simply described by(More)
—We show that by placing a slab of semiconductor material between two photonic bandgap (PBG) mirrors, waveguide modes at frequencies out of the PBG can be obtained. These modes are similar to the modes of a conventional dielectric slab wave-guide. Using these modes, we can obtain very good coupling between a PBG waveguide and a dielectric slab waveguide(More)
Interleukin-1 beta converting enzyme (ICE) is a mammalian homolog of CED-3, a protein required for programmed cell death in the nematode Caenorhabditis elegans. The activity of ICE can be specifically inhibited by the product of crmA, a cytokine response modifier gene encoded by cowpox virus. Microinjection of the crmA gene into chicken dorsal root ganglion(More)
The amyloid precursor protein (APP) is a transmembrane protein anchored in the membrane lipid bilayer. Choline and cytidine are major precursors of cell membranes, and are regulatory elements in membrane biosynthesis. We examined the levels of cellular APP holoprotein and secreted APPs when rat PC12 cells are stimulated to undergo increase in membrane(More)
Stimulation of muscarinic m1 or m3 receptors can, by generating diacylglycerol and activating protein kinase C, accelerate the breakdown of the amyloid precursor protein (APP) to form soluble, nonamyloidogenic derivatives (APPs), as previously shown. This relationship has been demonstrated in human glioma and neuroblastoma cells, as well as in transfected(More)
Amyloid plaques that accumulate in the brains of patients with Alzheimer's disease (AD) are primarily composed of aggregates of amyloid peptides that are derived from the amyloid precursor protein (APP). Overexpression of APP in cell cultures increases the formation of amyloidogenic peptides and causes neurodegeneration and cognitive dysfunction in(More)
Acetylcholinesterase (AChE) is concentrated at the vertebrate neuromuscular synapse. To determine whether increased transcript levels could underlie this selective accumulation, we employed a quantitative reverse transcription polymerase chain reaction-based assay to determine mRNA copy number in samples as small as single neuromuscular junctions (NMJs) and(More)
It has previously been shown that stimulation of muscarinic m1 or m3 receptors can, by generating diacylglycerol (DAG) and activating protein kinase C (PKC), accelerate the breakdown of the amyloid precursor protein (APP) to form soluble, non-amyloidogenic peptides (APPs). This relationship has been demonstrated in human glioma and neuroblastoma cells as(More)