Regina C. C. Luizão

Learn More
We synthesize findings to date from the world’s largest and longest-running experimental study of habitat fragmentation, located in central Amazonia. Over the past 32 years, Amazonian forest fragments ranging from 1 to 100 ha have experienced a wide array of ecological changes. Edge effects have been a dominant driver of fragment dynamics, strongly(More)
Edge effects are major drivers of change in many fragmented landscapes, but are often highly variable in space and time. Here we assess variability in edge effects altering Amazon forest dynamics, plant community composition, invading species, and carbon storage, in the world's largest and longest-running experimental study of habitat fragmentation. Despite(More)
Habitat loss and fragmentation are a pervasive threat to Earths biodiversity. For those who study such things, the Biological Dynamics of Forest Fragments Project (BDFFP) in central Amazonia has, since 1979, been a scientific Mecca. Two hours north of the city of Manaus in Brazil, this 1,000-squarekilometre study area is home to the worlds largest and(More)
It has been proposed that the C/N ratio, or quality, of litter or mulch mixtures affects N release. Although total N release from these mixtures and the effects on soil N are relatively well understood, a mechanistic understanding of the interactions between litter species with respect to their N release is still lacking. This study examines decomposition(More)
Experiments were carried out to test the effects of liming and nutrient additions on plant growth and soil processes such as C and N mineralisation in three contrasting forest types in central Amazonia: the stunted facies of heath forest (SHF), the tall facies of heath forest (THF) and the surrounding lowland evergreen rain forest (LERF). Calcium-carbonate(More)
Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a ‘terra firme forest’ in Central Amazonia. The contribution(More)
Shifting dynamics of climate-functional groups in oldgrowth Amazonian forests Nathalie Butt a g , Yadvinder Malhi a , Mark New a h i , Manuel J. Macía b , Simon L. Lewis c d , Gabriela Lopez-Gonzalez c , William F. Laurance e , Susan Laurance e , Regina Luizão f , Ana Andrade f , Timothy R. Baker c , Samuel Almeida j & Oliver L. Phillips c a Oxford(More)
We summarize a long-term study of the effects of edge creation on establishment of the economically important arboreal palm Oenocarpus bacaba in an experimentally fragmented landscape in central Amazonia. Recruitment and mortality of large individuals (≥10 cm diameter-at-breast-height) were recorded within 21 1-ha plots in fragmented and intact forests for(More)
We tested the hypothesis that the growth of fine roots upward into the leaf litter, forming a ‘surface root mat’, found widely in Amazonian forests, is of adaptive value for plants of poor soils because it makes possible more rapid uptake of limiting nutrients. We assessed the effect of invasion by fine roots on the rates of loss of dry mass and nutrient(More)
Studies were carried out in a lowland evergreen rain forest (LERF), on an ultisol, in the 'Reserva da Campina', 45 km north of Manaus, and in two facies of the highly distinct formation called heath forest, on spodosols. The spodosols had a layer of mor humus of thickness varying from nil in some parts in the smaller facies of heath forest (SHF) to 35 cm in(More)