Learn More
Mesenchymal stem cells (MSC) are capable of differentiating into bone, fat, cartilage, tendon and other organ progenitor cells. Despite the abundance of MSC within the organism, little is known about their in vivo properties or about their corresponding in vivo niches. We therefore isolated MSC from spongy (cancellous) bone biopsies of healthy adults. When(More)
To identify new genetic regulators of cellular aging and senescence, we performed genome-wide comparative RNA profiling with selected human cellular model systems, reflecting replicative senescence, stress-induced premature senescence, and distinct other forms of cellular aging. Gene expression profiles were measured, analyzed, and entered into a newly(More)
Mesenchymal stromal cells (MSC) have become a useful tool in curing graft versus host disease (GVHD) after transplantation. No information is presently available whether the immunosuppressive properties of this cell type are maintained in old age. It was therefore the aim of our study to analyze the immunoregulatory effect of MSC on peripheral blood(More)
The prospective clinical use of multipotent mesenchymal stromal stem cells (MSC) holds enormous promise for the treatment of a large number of degenerative and age-related diseases. However, the challenges and risks for cell-based therapies are multifaceted. The risks for patients receiving stem cells, which have been expanded in vitro in the presence of(More)
Regeneration, tissue remodeling, and organ repair after injury, which rely on the regulated activity of tissue-borne stem cells, become increasingly compromised with advancing age. Mesenchymal stroma cells were isolated from bone of differently aged healthy donors. The rare population of mesenchymal stem cells (MSCs) contained in the primary cell isolates(More)
Medical implants are increasingly often inserted into bone of frail patients, who are advanced in years. Due to age, severe trauma or pathology-related bone changes, osseous healing at the implant site is frequently limited. We were able to demonstrate that coating of endosseous implants with nanocrystalline diamond (NCD) allows stable functionalization by(More)
Recently, the BM has been shown to play a key role in regulating the survival and function of memory T cells. However, the impact of aging on these processes has not yet been studied. We demonstrate that the number of CD4⁺ and CD8⁺ T cells in the BM is maintained during aging. However, the composition of the T cell pool in the aged BM is altered with a(More)
Recently, a key role in memory T cell homing and survival has been attributed to the bone marrow (BM) in mice. In the human BM, the repertoire, function, and survival niches of CD4(+) and CD8(+) T cells have not yet been elucidated. In this study, we demonstrate that CD4(+) and CD8(+) effector memory T cells accumulate in the human BM and are in a(More)
During the lifetime of an adult organism, stem cells face extrinsic and intrinsic aging. Mesenchymal stem cells (MSC) can be expanded in culture, and the proliferation potential of individual cell isolates before growing senescent appear to be dependent on fitness and age of the donor, respectively. To date no molecular markers are available, which(More)
The length of telomeres is believed to critically influence cellular aging processes and disease development. In order to reliably monitor telomere length and the corresponding cellular telomerase activity by optimized procedures, either based on flow cytometry or quantitative PCR technique, we here propose three commonly used cell lines, HEK293, K562 and(More)