Regina B. Troyanovsky

Learn More
Plakoglobin is the only protein that occurs in the cytoplasmic plaques of all known adhering junctions and has been shown to be crucially involved in the formation and maintenance of desmosomes anchoring intermediate-sized filaments (IFs) by its interaction with the desmosomal cadherins, desmoglein (Dsg), and desmocollin (Dsc). This topogenic importance of(More)
The carboxyterminal cytoplasmic portions (tails) of desmosomal cadherins of both the desmoglein (Dsg) and desmocollin type are integral components of the desmosomal plaque and are involved in desmosome assembly and the anchorage of intermediate-sized filaments. When additional Dsg tails were introduced by cDNA transfection into cultured human epithelial(More)
To examine the potential of cytoplasmic portions ("tails") of desmosomal cadherins for assembly of desmosome plaque structures and anchorage of intermediate filaments (IFs), we transfected cultured human A-431 carcinoma cells, abundant in desmosomes and cytokeratin IFs, with constructs encoding chimeric proteins in which the transmembranous region of(More)
The plasticity of cell-cell adhesive structures is crucial to all normal and pathological morphogenetic processes. The molecular principles of this plasticity remain unknown. Here we study the roles of two dimerization interfaces, the so-called strand-swap and X dimer interfaces of E-cadherin, in the dynamic remodeling of adherens junctions using(More)
The cadherin extracellular region produces intercellular adhesion clusters through trans- and cis-intercadherin bonds, and the intracellular region connects these clusters to the cytoskeleton. To elucidate the interdependence of these binding events, cadherin adhesion was reconstructed from the minimal number of structural elements. F-actin-uncoupled(More)
Cadherin and nectin are distinct transmembrane proteins of adherens junctions. Their ectodomains mediate adhesion, whereas their cytosolic regions couple the adhesive contact to the cytoskeleton. Both these proteins are essential for adherens junction formation and maintenance. However, some basic aspects of these proteins, such as their organization in(More)
Nectins are immunoglobulin superfamily glycoproteins that mediate intercellular adhesion in many vertebrate tissues. Homophilic and heterophilic interactions between nectin family members help mediate tissue patterning. We determined the homophilic binding affinities and heterophilic specificities of all four nectins and the related protein nectin-like 5(More)
Afadin is an actin-binding protein that interacts with the intracellular region of the transmembrane proteins, nectins. In collaboration with other transmembrane proteins, cadherins, nectins form adherens junctions, a major type of cell-cell adhesive structures in the multicellular organisms. To elucidate the afadin function, we studied adherens junction(More)
Cadherin-catenin interactions play an important role in cadherin-mediated adhesion. Here we present strong evidence that in the cadherin-catenin complex α-catenin contributes to the binding strength of another catenin, p120, to the same complex. Specifically, we found that a β-catenin-uncoupled cadherin mutant interacts much more weakly with p120 than its(More)
The function of the actin-binding domain of α-catenin, αABD, including its possible role in the direct anchorage of the cadherin-catenin complex to the actin cytoskeleton, has remained uncertain. We identified two point mutations on the αABD surface that interfere with αABD binding to actin and used them to probe the role of α-catenin-actin interactions in(More)
  • 1