Refet Firat Yazicioglu

Learn More
This paper gives an overview of results of the Human++ research program [1]. This research aims to achieve highly miniaturized and nearly autonomous sensor systems that assist our health and comfort. It combines expertise in wireless ultra-low power communications, packaging and 3D integration technologies, MEMS energy scavenging techniques and low-power(More)
An ECG signal processor (ESP) is proposed for ambulatory arrhythmia monitoring systems. The ESP consists of three heterogeneous processors and performs filtering, data compression, ECG classification, and encryption. A data reduction scheme, consisting of skeleton and Huffman coding, are employed to reduce the on-chip memory capacity and memory access(More)
This paper presents the development of an ECG patch aiming at long term patient monitoring. The use of the recently standardized Bluetooth Low Energy (BLE) technology, together with a customized ultra-low-power ECG System on Chip (ECG SoC). including Digital Signal Processing (DSP) capabilities, enables the design of ultra low power systems able to(More)
Micro- and nano-technology has enabled development of smaller and smarter wearable devices for medical and lifestyle related applications. In particular, recent advances in EEG monitoring technologies pave the way for wearable, wireless EEG monitoring devices. Here, a low-power wireless EEG sensor platform that measures 8-channels of EEG, is described. The(More)
This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal(More)