Learn More
A cytoplasmically inherited element, [URE3], allows yeast to use ureidosuccinate in the presence of ammonium ion. Chromosomal mutations in the URE2 gene produce the same phenotype. [URE3] depends for its propagation on the URE2 product (Ure2p), a negative regulator of enzymes of nitrogen metabolism. Saccharomyces cerevisiae strains cured of [URE3] with(More)
The L-A double-stranded RNA virus of Saccharomyces cerevisiae encodes its major coat protein (80 kDa) and a minor single-stranded RNA binding protein (180 kDa) that has immunological cross-reactivity with the major coat protein. The sequence of L-A cDNA clones revealed two open reading frames (ORF), ORF1 and ORF2. These two reading frames overlap by 130(More)
The L-A double-stranded RNA (dsRNA) virus of Saccharomyces cerevisiae has two open reading frames (ORFs). ORF1 encodes the 80-kDa major coat protein (gag). ORF2, which is expressed only as a 180-kDa fusion protein with ORF1, encodes a single-stranded RNA-binding domain and has the consensus sequence for RNA-dependent RNA polymerases of (+)-strand and(More)
The [URE3] nonchromosomal genetic element is a prion of Ure2p, a regulator of nitrogen catabolism in Saccharomyces cerevisiae. Ure2p1-65 is the prion domain of Ure2p, sufficient to propagate [URE3] in vivo. We show that full length Ure2p-green fluorescent protein (GFP) or a Ure2p1-65-GFP fusion protein is aggregated in cells carrying [URE3] but is evenly(More)
In an mktl host, L-A-HN double-stranded RNA excludes M2 double-stranded RNA at 30 degrees C but not at 20 degrees C. Recessive mutations suppressing the exclusion of M2 by L-A-HN in an mktl host include six ski (superkiller) genes, three of which (ski6, ski7 and ski8) are new genes. The dominant mutations in one gene (MKS50) and recessive mutations in at(More)
The genetic properties of the [URE3] non-Mendelian element of Saccharomyces cerevisiae suggest that it is a prion (infectious protein) form of Ure2p, a regulator of nitrogen catabolism. In extracts from [URE3] strains, Ure2p was partially resistant to proteinase K compared with Ure2p from wild-type extracts. Overexpression of Ure2p in wild-type strains(More)
[URE3] is a prion (infectious protein) of the Ure2 protein of yeast. In vitro, Ure2p can form amyloid filaments, but direct evidence that these filaments constitute the infectious form is still missing. Here we demonstrate that recombinant Ure2p converted into amyloid can infect yeast cells lacking the prion. Infection produced a variety of [URE3] variants.(More)
The structure of the yeast L-A virus was determined by X-ray crystallography at 3.4 A resolution. The L-A dsRNA virus is 400 A in diameter and contains a single protein shell of 60 asymmetric dimers of the coat protein, a feature common among the inner protein shells of dsRNA viruses and probably related to their unique mode of transcription and(More)
Viruses, plasmids, and prions can spread in nature despite being a burden to their hosts. Because a prion arises de novo in more than one in 10(6) yeast cells and spreads to all offspring in meiosis, its absence in wild strains would imply that it has a net deleterious effect on its host. Among 70 wild Saccharomyces strains, we found the [PIN+] prion in 11(More)
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive amyloid form of the Ure2 protein. Ure2p residues 1-65 constitute the prion domain, and the remaining C-terminal portion regulates nitrogen catabolism. We have examined the URE2 genes of wild-type isolates of S. cerevisiae and those of several pathogenic yeasts and a filamentous(More)