Redouan Mahou

Learn More
Pegylation using heterotelechelic poly(ethylene glycol) (PEG) offers many possibilities to create high-performance molecules and materials. A versatile route is proposed to synthesize heterobifunctional PEG containing diverse combinations of azide, amine, thioacetate, thiol, pyridyl disulfide, as well as activated hydroxyl end groups. Asymmetric activation(More)
The mitochondria toxicity assay (MTT assay) is an established method for monitoring cell viability based on mitochondrial activity. Here the MTT assay is proposed for the in situ quantification of the living cell density of microencapsulated Jurkat cells. Three systems were used to encapsulate the cells, namely a membrane consisting of an interpenetrating(More)
Novel calcium alginate poly(ethylene glycol) hybrid microspheres (Ca-alg-PEG) were developed and evaluated as potentially suitable materials for cell microencapsulation. Grafting 5-13% of the backbone units of sodium alginate (Na-alg) with α-amine-ω-thiol PEG maintained the gelling capacity in presence of calcium ions, while thiol end groups allowed for(More)
The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol) hybrid microspheres (alg-PEG-M) were produced by(More)
BACKGROUND & AIMS Mesenchymal stem cell (MSC) transplantation was shown to be effective for the treatment of liver fibrosis, but the mechanisms of action are not yet fully understood. We transplanted encapsulated human MSCs in two mouse models of liver fibrosis to determine the mechanisms behind the protective effect. METHODS Human bone marrow-derived(More)
Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced(More)
An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer(More)
Injectable hydrogels are suitable for local cell delivery to the subcutaneous space, but the lack of vasculature remains a limiting factor. Previously we demonstrated that biomaterials containing methacrylic acid promoted vascularization. Here we report the preparation of a semi-interpenetrating polymer network (SIPN), and its evaluation as an injectable(More)
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable(More)
The IGF-1 signaling pathway and IGF-1-dependent macrophage/endothelial cell crosstalk was found to be critical features of the vascular regenerative effect displayed by implanted methacrylic acid -co-isodecyl acrylate (MAA-co-IDA; 40% MAA) coated disks in CD1 mice. Inhibition of IGF-1 signaling using AG1024 an IGF1-R tyrosine kinase inhibitor abrogated(More)