Learn More
The dimorphic switch from a single-cell budding yeast to a filamentous form enables Saccharomyces cerevisiae to forage for nutrients and the opportunistic pathogen Candida albicans to invade human tissues and evade the immune system. We constructed a genome-wide set of targeted deletion alleles and introduced them into a filamentous S. cerevisiae strain,(More)
A common hallmark of many fungal species is the capacity to undergo cellular morphogenesis programs, which, for fungal pathogens, play critical roles in sexual reproduction, nutrient acquisition and virulence. 1 Fungal morphogenesis comprises a diversity of processes, 1,2 ranging from spore germination and branching in filamentous fungi such as the pathogen(More)
BACKGROUND Hsp90 is an environmentally contingent molecular chaperone that influences the form and function of diverse regulators of cellular signaling. Hsp90 potentiates the evolution of fungal drug resistance by enabling crucial cellular stress responses. Here we demonstrate that in the leading fungal pathogen of humans, Candida albicans, Hsp90 governs(More)
The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with -10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in(More)
Here we present methods for injecting raw frames at Layer 1 from within upper-layer protocols by abuse of in-band signaling mechanisms common to most digital radio protocols. This packet piggy-backing technique allows attackers to hide malicious packets inside packets that are permitted on the network. When these carefully crafted Packets-in-Packets (PIPs)(More)
Although software exploitation historically started as an exercise in coaxing the target's execution into attacker-supplied binary shellcode, it soon became a practical study in pushing the limits of unexpected computation that could be caused by crafted data not containing any native code. We show how the ABI metadata that drives the creation of a process'(More)
Temperature is a critical and ubiquitous environmental signal that governs the development and virulence of diverse microbial species, including viruses, archaea, bacteria, fungi, and parasites. Microbial survival is contingent upon initiating appropriate responses to the cellular stress induced by severe environmental temperature change. In the case of(More)
Trust Analysis, i.e. determining that a system will not execute some class of computations, typically assumes that all computation is captured by an instruction trace. We show that powerful computation on x86 processors is possible without executing any CPU instructions. We demonstrate a Turing-complete execution environment driven solely by the IA32(More)
The molecular chaperone Hsp90 orchestrates regulatory circuitry governing fungal morphogenesis, biofilm development, drug resistance, and virulence. Hsp90 functions in concert with co-chaperones to regulate stability and activation of client proteins, many of which are signal transducers. Here, we characterize the first Hsp90 co-chaperone in the leading(More)
The trimorphic fungus Candida albicans is the leading cause of systemic candidiasis, a disease with poor prognosis affecting immunocompromised individuals. The capacity of C. albicans to transition between morphological states is a key determinant of its ability to cause life-threatening infection. Recently the molecular chaperone heat shock protein 90(More)