Learn More
Truncated escape responses characteristic of the zebrafish shocked mutant result from a defective glial glycine transporter (GlyT1). In homozygous GlyT1 mutants, irrigating brain ventricles with glycine-free solution rescues normal swimming. Conversely, elevating brain glycine levels restores motility defects. These experiments are consistent with previous(More)
The ATP:ADP ratio is a critical parameter of cellular energy status that regulates many metabolic activities. Here we report an optimized genetically encoded fluorescent biosensor, PercevalHR, that senses the ATP:ADP ratio. PercevalHR is tuned to the range of intracellular ATP:ADP expected in mammalian cells, and it can be used with one- or two-photon(More)
Slow-channel syndrome (SCS) is an autosomal-dominant disease resulting from mutations in muscle acetylcholine (ACh) receptor subunits. The associated fatigue and muscle degeneration are proposed to result from prolonged synaptic responses that overload intracellular calcium. Single-channel studies on reconstituted receptors bearing human mutations indicate(More)
Fast and slow skeletal muscle types in larval zebrafish can be distinguished by a fivefold difference in the time course of their synaptic decay. Single-channel recordings indicate that this difference is conferred through kinetically distinct nicotinic acetylcholine receptor (AChR) isoforms. The underlying basis for this distinction was explored by cloning(More)
  • 1