Learn More
Skeletal muscle insulin sensitivity is enhanced after acute exercise and short-term endurance training. We investigated the impact of exercise on the gene expression of key insulin-signaling proteins in humans. Seven untrained subjects (4 women and 3 men) completed 9 days of cycling at 63 +/- 2% of peak O(2) uptake for 60 min/day. Muscle biopsies were taken(More)
BACKGROUND Dietary fatty acids may be important in regulating gene expression. However, little is known about the effect of changes in dietary fatty acids on gene regulation in human skeletal muscle. OBJECTIVE The objective was to determine the effect of altered dietary fat intake on the expression of genes encoding proteins necessary for fatty acid(More)
The effects of a single bout of exercise and exercise training on the expression of genes necessary for the transport and beta-oxidation of fatty acids (FA), together with the gene expression of transcription factors implicated in the regulation of FA homeostasis were investigated. Seven human subjects (3 male, 4 female, 28.9 +/- 3.1 yr of age, range 20-42(More)
Endurance exercise transiently increases the mRNA of key regulatory proteins involved in skeletal muscle metabolism. During prolonged exercise and subsequent recovery, circulating plasma fatty acid (FA) concentrations are elevated. The present study therefore aimed to determine the sensitivity of key metabolic genes to FA exposure, assessed in vitro using(More)
Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on(More)
Fasting forces adaptive changes in whole body and skeletal muscle metabolism that increase fat oxidation and decrease the oxidation of carbohydrate. We tested the hypothesis that 40 h of fasting would decrease pyruvate dehydrogenase (PDH) activity and increase PDH kinase (PDK) isoform mRNA expression in human skeletal muscle. The putative transcriptional(More)
BACKGROUND Skeletal muscle mass is governed by multiple IGF-1-sensitive positive regulators of muscle-specific protein synthesis (myogenic regulatory factors which includes myoD, myogenin and Myf5) and negative regulators, including the atrogenic proteins myostatin, atrogin-1 and muscle ring finger 1 (MuRF-1). The coordinated control of these myogenic and(More)
This study examined the effects of short- and long-term aerobic training on the stable up-regulation of pyruvate dehydrogenase (PDH) and PDH kinase (PDK) in human skeletal muscle. We hypothesized that 8 weeks, but not 1 week, of aerobic training would increase total PDH (PDHt) and PDK activities compared to pretraining, and this would be detectable at the(More)
Dietary fatty acids regulate the abundance and activity of various proteins involved in the regulation of fat oxidation by functioning as regulators of gene transcription. To determine whether the transcription of key lipid metabolic proteins necessary for fat metabolism within human skeletal muscle are regulated by acute elevations in circulating free(More)
This study examined the actions of 17beta-estradiol (E(2)) and progesterone on the regulation of the peroxisome proliferator-activated receptors (PPARalpha and PPARgamma) family of nuclear transcription factors and the mRNA abundance of key enzymes involved in fat oxidation, in skeletal muscle. Specifically, carnitine palmitoyltransferase I (CPT I),(More)