Rebecca Greendyke

Learn More
Mycobacterium abscessus causes disease in patients with structural abnormalities of the lung, and it is an emerging pathogen in patients with cystic fibrosis. Colonization of the airways by nontuberculous mycobacteria is a harbinger of invasive lung disease. Colonization is facilitated by biofilm formation, with M. abscessus glycopeptidolipids playing an(More)
Mycobacterium abscessus causes refractory pulmonary infections requiring surgery for cure. It exists as a smooth biofilm-forming phenotype which is noninvasive and a rough, non-biofilm-forming phenotype which can invade macrophages and cause persistent pulmonary infection in mice. We have postulated that the dissociation of the smooth phenotype to the rough(More)
To begin to understand the role of Mycobacterium smegmatis dnaA in DNA replication, the dnaA gene was characterized at the genetic level. Western analyses revealed that DnaA accounts for approximately 0.18% of the total cellular protein during both the active and stationary growth periods. Expression of antisense dnaA RNA reduced viability, indicating that(More)
The origin of replication (oriC) region in some clinical strains of Mycobacterium tuberculosis is a hot spot for IS6110 elements. To understand how clinical strains with insertions in oriC can replicate their DNA, we characterized the oriC regions of some clinical strains. Using a plasmid-based oriC-dependent replication assay, we showed that IS6110(More)
The genetic aspects of oriC replication initiation in Mycobacterium tuberculosis are largely unknown. A two-step genetic screen was utilized for isolating M. tuberculosis dnaA cold-sensitive (cos) mutants. First, a resident plasmid expressing functional dnaA integrated at the attB locus in dnaA null background was exchanged with an incoming plasmid bearing(More)
The genetic aspects of DnaA mediated initiation of oriC replication in mycobacteria are largely unknown. To get insights into the replication initiation process in mycobacteria, we characterized Mycobacterium tuberculosis DnaA and its interactions with oriC. We show that the replacement of Mycobacterium smegmatis dnaA with the M. tuberculosis counterpart(More)
  • 1