Rebecca A. Stockton

Learn More
Cerebral cavernous malformation (CCM), a disease associated with defective endothelial junctions, result from autosomal dominant CCM1 mutations that cause loss of KRIT-1 protein function, though how the loss of KRIT-1 leads to CCM is obscure. KRIT-1 binds to Rap1, a guanosine triphosphatase that maintains the integrity of endothelial junctions. Here, we(More)
The angiogenic sprout has been compared to the growing axon, and indeed, many proteins direct pathfinding by both structures. The Roundabout (Robo) proteins are guidance receptors with well-established functions in the nervous system; however, their role in the mammalian vasculature remains ill defined. Here we show that an endothelial-specific Robo, Robo4,(More)
Endothelial cell-cell junctions regulate vascular permeability, vasculogenesis, and angiogenesis. Familial cerebral cavernous malformations (CCMs) in humans result from mutations of CCM2 (malcavernin, OSM, MGC4607), PDCD10 (CCM3), or KRIT1 (CCM1), a Rap1 effector which stabilizes endothelial cell-cell junctions. Homozygous loss of KRIT1 or CCM2 produces(More)
Elevated permeability of the endothelium is thought to be crucial in atherogenesis because it allows circulating lipoproteins to access subendothelial monocytes. Both local hemodynamics and cytokines may govern endothelial permeability in atherosclerotic plaque. We recently found that p21-activated kinase (PAK) regulates endothelial permeability. We now(More)
BACKGROUND AND PURPOSE Cerebral cavernous malformations (CCMs) are characterized by grossly dilated capillaries, associated with vascular leak and hemorrhage, and occur in sporadic or inherited (autosomal-dominant) forms with mutations in 1 of 3 gene loci (CCM 1, 2 or 3). We previously reported that the CCM1 protein (KRIT1) localizes to endothelial(More)
Activation of Rap1 small GTPases stabilizes cell--cell junctions, and this activity requires Krev Interaction Trapped gene 1 (KRIT1). Loss of KRIT1 disrupts cardiovascular development and causes autosomal dominant familial cerebral cavernous malformations. Here we report that native KRIT1 protein binds the effector loop of Rap1A but not H-Ras in a(More)
Cerebral cavernous malformations (CCMs) are vascular lesions of the central nervous system appearing as multicavernous, blood-filled capillaries, leading to headache, seizure and hemorrhagic stroke. CCM occurs either sporadically or as an autosomal dominant disorder caused by germline mutation of one of the three genes: CCM1/KRIT1, CCM2/MGC4607 and(More)
Purpose:The phenotypic manifestations of cerebral cavernous malformation disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase–mediated hyperpermeability, a potential therapeutic target, has not been established.Methods:We analyzed PDCD10 small interfering RNA–treated endothelial cells for stress(More)
Vascular endothelial cells respond to laminar shear stress by aligning in the direction of flow, a process which may contribute to atheroprotection. Here we report that localized alpha4 integrin phosphorylation is a mechanism for establishing the directionality of shear stress-induced alignment in microvascular endothelial cells. Within 5 minutes of(More)
Endothelial cells lining the vasculature have close cell-cell associations that maintain separation of the blood fluid compartment from surrounding tissues. Permeability is regulated by a variety of growth factors and cytokines and plays a role in numerous physiological and pathological processes. We examined a potential role for the p21-activated kinase(More)