Learn More
Because the flowering and fruiting phenology of plants is sensitive to environmental cues such as temperature and moisture, climate change is likely to alter community-level patterns of reproductive phenology. Here we report a previously unreported phenomenon: experimental warming advanced flowering and fruiting phenology for species that began to flower(More)
[1] We conducted two experiments, one long term with a 2°C increase (Experiment 1) and one short term with a 4.4°C increase (Experiment 2), to investigate main and interactive effects of warming, clipping, and doubled precipitation on soil CO 2 efflux and its temperature sensitivity in a U.S. tallgrass prairie. On average, warming increased soil CO 2 efflux(More)
Modeling studies have shown that nitrogen (N) strongly regulates ecosystem responses and feedback to climate warming. However, it remains unclear what mechanisms underlie N regulation of ecosystem-climate interactions. To examine N regulation of ecosystem feedback to climate change, we have conducted a warming and clipping experiment since November 1999 in(More)
Terrestrial ecosystems control carbon dioxide fluxes to and from the atmosphere through photosynthesis and respiration, a balance between net primary productivity and heterotrophic respiration, that determines whether an ecosystem is sequestering carbon or releasing it to the atmosphere. Global and site-specific data sets have demonstrated that climate and(More)
Human-induced climate change is expected to increase both the frequency and severity of extreme climate events, but their ecological impacts on root dynamics are poorly understood. We conducted a 1-year pulse warming and precipitation experiment in a tallgrass prairie in Oklahoma, USA to examine responses of root dynamics. We collected data in the(More)
Climate warming has been hypothesized to influence dynamics of soil organic carbon (SOC), especially labile SOC due to its rapid response to changes in temperature and carbon (C) supply. In this study, we examined impacts of experimental warming on the labile and whole SOC pools in association with warming-induced vegetation changes from 2000 to 2008 in a(More)
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP , defined as the fraction of belowground NPP (BNPP) to NPP], and rain-use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3(More)
Aims To determine if an experimentally applied anomalous weather year could have effects on species composition and community structure that would carry over into the following year. Methods We conducted a field experiment applying two levels of temperature (ambient and +4°C) and two levels of precipitation (ambient and doubled) and followed cover of plant(More)
Soil microbial communities are extremely complex, being composed of thousands of low-abundance species (<0.1% of total). How such complex communities respond to natural or human-induced fluctuations, including major perturbations such as global climate change, remains poorly understood, severely limiting our predictive ability for soil ecosystem functioning(More)
1. The occurrence and intensity of climate extremes, such as extremely warm years, are expected to continue to increase with increasing tropospheric radiative forcing caused by anthropogenic greenhouse gas emissions. 2. Responses of terrestrial ecosystem processes and services – such as above-ground net primary productivity (ANPP) and maintenance of plant(More)