Rebecca A . Clayton

Learn More
Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified,(More)
An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830,137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the(More)
Here we determine the complete genomic sequence of the gram negative, gamma-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such(More)
The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation,(More)
The complete nucleotide sequence (580,070 base pairs) of the Mycoplasma genitalium genome, the smallest known genome of any free-living organism, has been determined by whole-genome random sequencing and assembly. A total of only 470 predicted coding regions were identified that include genes required for DNA replication, transcription and translation, DNA(More)
The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of(More)
The complete genome sequence of Treponema pallidum was determined and shown to be 1,138,006 base pairs containing 1041 predicted coding sequences (open reading frames). Systems for DNA replication, transcription, translation, and repair are intact, but catabolic and biosynthetic activities are minimized. The number of identifiable transporters is small, and(More)
The complete 1.66-megabase pair genome sequence of an autotrophic archaeon, Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements have been determined by whole-genome random sequencing. A total of 1738 predicted protein-coding genes were identified; however, only a minority of these (38 percent) could be assigned a putative(More)
Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their(More)
Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803-base pair circular chromosome with 4,758 predicted protein-encoding(More)