Learn More
Iron deficiency was found to affect the redox state of the Photosystem II acceptor side in dark-adapted, attached leaves of sugar beet (Beta vulgaris L.). Dark-adapted iron-deficient leaves exhibited relatively high Fo and Fpl levels in the Kautsky chlorophyll fluorescence induction curve when compared to the iron-sufficient controls. However, far-red(More)
Iron deficiency changed markedly the shape of the leaf chlorophyll fluorescence induction kinetics during a dark-light transition, the so-called Kautsky effect. Changes in chlorophyll fluorescence lifetime and yield were observed, increasing largely the minimal and the intermediate chlorophyll fluorescence levels, with a marked dip between the intermediate(More)
In order to get catalytic antibodies modelling peroxidases BALB/c mice have been immunized with iron(III)-alpha,alpha,alpha,beta-mesotetrakis-orthocarboxypheny l-porphyrin (Fe-(ToCPP))-KLH conjugates. Monoclonal antibodies have been produced by the hybridoma technology. Three antibodies, 2 IgG1 and 1 IgG2a, were found to bind both Fe(ToCPP) and the free(More)
Besides existing models of chemical or biotechnological origin for hemoproteins like peroxidases and cytochromes P450, catalytic antibodies (Abs) with a metalloporphyrin cofactor represent a promising alternative route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that, until now, the first strategy for(More)
The topology of the binding site has been studied for two monoclonal antibodies 13G10 and 14H7, elicited against iron(III)-alpha,alpha,alpha,beta-meso-tetrakis(ortho-carboxyphenyl)porph yrin [alpha,alpha,alpha, beta-Fe[(o-COOHPh)4-porphyrin]], and which exhibit in the presence of this alpha,alpha,alpha, beta-Fe[(o-COOHPh)4-porphyrin] cofactor a peroxidase(More)
  • 1