Razi Seyyedi

Learn More
Radiation-induced soft errors have become a key challenge in advanced commercial electronic components and systems. We present results of Soft Error Rate (SER) analysis of an embedded processor. Our SER analysis platform accurately models all generation, propagation and masking effects starting from a technology response model derived using TCAD simulations(More)
Radiation-induced soft errors have become a key challenge in advanced commercial electronic components and systems. We present the results of a soft error rate (SER) analysis of an embedded processor. Our SER analysis platform accurately models generation, propagation, and masking effects starting from a technology response model derived using TCAD(More)
Multiple bit upsets due to radiation-induced soft errors are a major concern in nanoscale technology nodes. Once such errors occur in the configuration frames of an FPGA device, they permanently affect the functionality of the mapped design. The combination of error correction schemes and configuration scrubbing is an efficient approach to avoid such(More)
Fast and accurate soft error vulnerability assessment is an integral part of cost-effective robust system design. The de facto approach is expensive fault simulation or emulation in which the error is injected in random bits and cycles, and then the effect is simulated for millions of cycles. In this paper, we propose a novel alternative approach to obtain(More)
Predicting MOSFET models plays a pivotal role in circuit design and its optimization. Independent Gate FinFETs (IGFinFET) are interesting for designers as they are more flexible than Common Multi-Gate FinFETs (CMGFinFET) in digital circuit design. In this work, we implement a model for symmetrical IGFinFET using CMGFinFET model based on Multi-Gate(More)
  • 1