Raymundo Cea-Olivares

Learn More
Deficiencies of folic acid and methionine, two of the major components of the methyl metabolism, correlate with an increment of chromosome breaks and micronuclei. It has been proposed that these effects may arise from a decrease of S-adenosyl-L-methionine (SAM), the universal methyl donor. Some xenobiotics, such as arsenic, originate a reduction of SAM(More)
The reaction of nBuSnCl3 and the sodium salt of 2-mercaptoethanol (1:1) in ethanol gave the compound Sn(nBu)(Cl)[(OCH2CH2S)2Sn(nBu)]2 (1). [(nBu)Sn(SCH2CH2O)SCH2CH2OH] (2) was initially isolated from the reaction of 1 with nBuMgCl as a rearrangement product but was also synthesized from nBuSn(O)OH and two molar equivalents of 2-mercaptoethanol. Both(More)
Equimolar and excess ratio reactions of AlMe(3) and Al(i)Bu(3) with the ligands 4,5-(P(E)Ph(2))(2)tzH (tz = 1,2,3-triazole; E = O (1), S (2), Se(3)) were performed, showing a vast variety of coordination modes. The products obtained, [AlR(2){kappa(2)-O,O'-[4,5-(P(O)Ph(2))(2)tz]}] (R = Me (4), (i)Bu (5)),(More)
New lanthanide complexes with 4,5-bis(diphenyl)phosphoranyl-1,2,3-triazolate (L(-)), LnL(3).nH(2)O (1-8) and LnL(3)(phen).nH(2)O (9-16) (Ln = La, Ce, Nd, Sm, Eu, Gd, Tb, Er), have been prepared and spectroscopically characterized. The structures of LnL(3).nH(2)O (Ln = La, Ce, Nd, Sm and Gd) were determined by X-ray crystallography. The metal centers exhibit(More)
The novel M[(OPPh2)2N]2.nTHF (M = Sr (2), Ba (3)) complexes were prepared and characterized. Upon exposure to atmospheric oxygen, 2 and 3 were transformed to the dinuclear species Sr2-[(OPPh2)2N]4.2C3H6O3 (4) and Ba(2)[(OPPh2)2N]4.2C4H8O3 (5), respectively. Compounds 4 and 5 contain coordinated carboxylic acids obtained from the oxidative degradation of DME(More)
The heterobimetallic aluminosilicate [LAl(SLi)(micro-O)Si(OLi.2thf)(O(t)Bu)(2)](2) was prepared from the LAl(SH)(micro-O)Si(OH)(O(t)Bu)(2) (L = [HC{C(Me)N(Ar)}(2)](-), Ar = 2,6-di-(i)Pr(2)C(6)H(3)) ligand, which can also be hydrolyzed to LAl(OH.thf)(micro-O)Si(OH)(O(t)Bu)(2)- leading to the first aluminosilicate-dihydroxide soluble in organic solvents.
Three novel aluminum-containing tin(IV) heterobimetallic sulfides are reported. The reaction of [LAl(SLi)2(THF)2]2 (1) [L = HC(CMeNAr)2, Ar = 2,6-iPr2C6H3] with Ph2SnCl2, Me2SnCl2, and SnCl4 in THF respectively afforded LAl(mu-S)2SnPh2 (2), LAl(mu-S)2SnMe2 (3), and LAl(mu-S)2Sn(mu-S)2AlL (4) in moderate yields. Compounds 2, 3, and 4 were characterized by(More)
Molecular aluminosilicate Al(SH)(micro-O)Si(OH)(O(t)Bu)(2) ( = [HC{C(Me)N(Ar)}(2)](-), Ar = 2,6-(i)Pr(2)C(6)H(3)) has been prepared from Al(SH)(2) and ((t)BuO)(2)Si(OH)(2) in high yield. When reacted with one equiv. of water, the unique aluminosilicate containing two terminal hydroxy groups Al(OH.THF)(mu-O)Si(OH)(O(t)Bu)(2) can be isolated. However, when is(More)
The preparation of novel alkali metal chalcogenides supported by multidentate nitrogen rich ligands is reported. Treatment of the ligand precursors [H{(4,5-(P(E)Ph(2))(2)tz}] (E = S (1a), Se (1b)) with organolithium reagents or elemental sodium and potassium in tetrahydrofuran (THF) leads to the isolation of 2-7 in high yields. These compounds were(More)