Raymond P. Henry

Learn More
When transferred from 865 to 250 m-osmol salinity, the blue crab C. sapidus maintains its blood Na+ and Cl~ concentrations significantly above those in the medium. When branchial carbonic anhydrase is inhibited by acetazolamide, ion regulation fails and the animals do not survive the transfer. An alkalosis occurs in the blood at low salinity, indicated by(More)
Carcinus maenas, commonly known as the European green crab, is one of the best-known and most successful marine invasive species. While a variety of natural and anthropogenic mechanisms are responsible for the geographic spread of this crab, its ability to adapt physiologically to a broad range of salinities, temperatures and other environmental factors has(More)
The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the(More)
The enzyme carbonic anhydrase (CA) catalyzes the reversible hydration/dehydration of CO(2) and water, maintaining a near-instantaneous equilibrium among all chemical species involved in the reaction. CA is found in association with all tissue and organ systems involved in the transport and excretion of CO(2), from the site of CO(2) production, metabolically(More)
The enzyme carbonic anhydrase appears to be a central molecular component in the suite of physiological and biochemical adaptations to low salinity found in euryhaline crustaceans. It is present in high activities in the organs responsible for osmotic and ionic regulation, the gills, and more specifically, the individual gills that are specialized for(More)
Carbonic anhydrase (CA) is a central enzyme to both transport and metabolic processes at the cellular level. In metabolically active tissue such as muscle, CA in the cytoplasm and on the sarcolemma appears to be important in facilitating CO2 transport out of the cell. Membrane-associated CA, with an extracellular orientation, also appears to be important in(More)
Carbonic anhydrase (CA) induction in the gills of the euryhaline blue crab, Callinectes sapidus, was measured in response to lowered environmental salinity. Simultaneous measurements of ornithine decarboxylase (ODC) activity were made in gills and nonbranchial tissues to determine whether ODC activity and the resultant synthesis of polyamines played a role(More)
The subcellular distribution and kinetic properties of carbonic anhydrase were examined in red blood cells and gills of the lamprey, Petromyzon marinus, a primitive agnathan, and rainbow trout, Oncorhynchus mykiss, a modern teleost, in relation to the evolution of rapid Cl−/HCO 3 − exchange in the membrane of red blood cells. In the lamprey, which either(More)
Carbonic anhydrase activity in the extracellular fluid of lower vertebrates is considered to be minimal, either because of the absence of carbonic anhydrase or because of the presence of naturally occurring inhibitors. The presence of carbonic anhydrase activity and circulating inhibitors was measured in plasma and subcellular fractions of gill tissue in(More)
The electrometric ∆pH method and an in vitro radioisotopic HCO3− dehydration assay were used to demonstrate the presence of true extracellular carbonic anhydrase (CA) activity in the blood of the Pacific spiny dogfish Squalus acanthias. An extracorporeal circulation and stopflow technique were then used to characterise the acid–base disequilibrium in the(More)