Learn More
The subcellular distribution and kinetic properties of carbonic anhydrase were examined in red blood cells and gills of the lamprey, Petromyzon marinus, a primitive agnathan, and rainbow trout, Oncorhynchus mykiss, a modern teleost, in relation to the evolution of rapid Cl−/HCO 3 − exchange in the membrane of red blood cells. In the lamprey, which either(More)
Carbonic anhydrase activity in the extracellular fluid of lower vertebrates is considered to be minimal, either because of the absence of carbonic anhydrase or because of the presence of naturally occurring inhibitors. The presence of carbonic anhydrase activity and circulating inhibitors was measured in plasma and subcellular fractions of gill tissue in(More)
Carcinus maenas, commonly known as the European green crab, is one of the best-known and most successful marine invasive species. While a variety of natural and anthropogenic mechanisms are responsible for the geographic spread of this crab, its ability to adapt physiologically to a broad range of salinities, temperatures and other environmental factors has(More)
  • R P Henry
  • 2001
The enzyme carbonic anhydrase appears to be a central molecular component in the suite of physiological and biochemical adaptations to low salinity found in euryhaline crustaceans. It is present in high activities in the organs responsible for osmotic and ionic regulation, the gills, and more specifically, the individual gills that are specialized for(More)
An isolated, perfused tail preparation was used to study the role of carbonic anhydrase (CA) in CO2 and NH3 transport across the sarcolemma of white muscle in the rainbow trout. Tissue was perfused with either control saline or saline containing the CA inhibitors quaternary ammonium sulfanilamide (QAS) or acetazolamide (Az). Inhibition of extracellular CA(More)
Carbonic anhydrase (CA) activity in the gills of the euryhaline blue crab, Callinectes sapidus, was measured in response to acute low-salinity transfer and treatment with eyestalk ablation (ESA) in an attempt to elucidate potential regulatory mechanisms of salinity-mediated CA induction. ESA alone resulted in an approximate doubling of CA activity in the(More)
The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the(More)
Carbonic anhydrase activity in rat lungs perfused free of blood was localized by homogenization of the tissue followed by differential centrifugation. Four fractions were obtained from the homogenate, a cell debris pellet with a mitochondrial pellet and a microsomal pellet with a clear cytosol supernatant. The last named fraction contained 67% of the total(More)
The enzyme carbonic anhydrase (CA) catalyzes the reversible hydration/dehydration of CO(2) and water, maintaining a near-instantaneous equilibrium among all chemical species involved in the reaction. CA is found in association with all tissue and organ systems involved in the transport and excretion of CO(2), from the site of CO(2) production, metabolically(More)
Two euryhaline species of decapod crustaceans, Carcinus maenas and Callinectes sapidus, were subjected to a series of acute low-salinity challenges, and changes in carbonic anhydrase (CA) activity in the gills were monitored in order to characterize the nature of salinity-sensitive CA induction. CA activity is uniformly low in all gills of both species at(More)