Raymond L. D. Whitby

Learn More
Multiwalled carbon nanotubes (CNTs) coated with neurotrophin were used to regulate the differentiation and survival of neurons. Neurotrophin (nerve growth factor [NGF] or brain-derived neurotrophic factor [BDNF]) was covalently bound to CNTs modified by amino groups using a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) reagent. The CNTs(More)
An in situ polycondensation approach was applied to functionalize multiwalled carbon nanotubes (MWNTs), resulting in various linear or hyperbranched polycondensed polymers [e.g., polyureas, polyurethanes, and poly(urea-urethane)-bonded carbon nanotubes]. The quantity of the grafted polymer can be easily controlled by the feed ratio of monomers. As a typical(More)
Breaking through the stoichiometry barrier: as the diameter of silver particles is decreased below a critical size of 32 nm, the molar ratio of aqueous Hg(II) to Ag(0) drastically increases beyond the conventional Hg/Ag ratio of 0.5:1, leading to hyperstoichiometry with a maximum ratio of 1.125:1. Therein, around 99% of the initial silver is retained to(More)
Multiwalled carbon nanotubes (MWCNTs) possess unique properties rendering them a potentially useful biomaterial for neurobiological applications such as providing nanoscale contact-guidance cues for directing axon growth within peripheral nerve repair scaffolds. The in vitro biocompatibility of MWCNTs with postnatal mouse spinal sensory neurons was assessed(More)
The extensive oxygen-group functionality of single-layer graphene oxide proffers useful anchor sites for chemical functionalization in the controlled formation of graphene architecture and composites. However, the physicochemical environment of graphene oxide and its single-atom thickness facilitate its ability to undergo conformational changes due to(More)
  • 1