Learn More
Type 2 (or North American-like) porcine reproductive and respiratory syndrome virus (PRRSV) was first recorded in 1987 in the United States and now occurs in most commercial swine industries throughout the world. In this study, we investigated the epidemiological and evolutionary behaviors of type 2 PRRSV. Based on phylogenetic analyses of 8,624 ORF5(More)
Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the(More)
We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work(More)
The 3D structures of human therapeutic targets are enabling for drug discovery. However, their purification and crystallization remain rate determining. In individual cases, ligands have been used to increase the success rate of protein purification and crystallization, but the broad applicability of this approach is unknown. We implemented two screening(More)
Since its first discovery two decades ago, porcine reproductive and respiratory syndrome virus (PRRSV) has been the subject of intensive research due to its huge impact on the worldwide swine industry. Thanks to the phylogenetic analyses, much has been learned concerning the genetic diversity and evolution history of the virus. In this review, we focused on(More)
Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles fuse with the plasma membrane and release their contents in response to an intracellular calcium surge. This process regulates various cellular functions such as plasma membrane repair in plants and animals, the discharge of defensive spikes in Paramecium, and the(More)
Macrophages are specialized to detect and destroy intracellular microbes and yet a number of pathogens have evolved to exploit this hostile niche. Here we demonstrate that the obligate intracellular parasite Toxoplasma gondii disarms macrophage innate clearance mechanisms by secreting a serine threonine kinase called ROP18, which binds to and phosphorylates(More)
Serine/threonine kinases secreted from rhoptry organelles constitute important virulence factors of Toxoplasma gondii. Rhoptry kinases are highly divergent and their structures and regulatory mechanism are hitherto unknown. Here, we report the X-ray crystal structures of two related pseudokinases named ROP2 and ROP8, which differ primarily in their(More)
The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite's survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for(More)
Cyclase-associated proteins (CAPs) are evolutionary conserved G-actin-binding proteins that regulate microfilament turnover. CAPs have a modular structure consisting of an N-terminal adenylate cyclase binding domain, a central proline-rich segment, and a C-terminal actin binding domain. Protozoan parasites of the phylum Apicomplexa, such as Cryptosporidium(More)