Learn More
We expect that many-core microprocessors will push performance per chip from the 10 gigaflop to the 10 teraflop range in the coming decade. To support this increased performance, memory and inter-core bandwidths will also have to scale by orders of magnitude. Pin limitations, the energy cost of electrical signaling, and the non-scalability of chip-length(More)
Ultra-small modulator and demodulator for 10 Gb/s differential phase-shift-keying (DPSK), using silicon-based microrings, are proposed. A single-waveguide microring modulator with over-coupling between ring and waveguide generates a DPSK signal, while a double-waveguide microring filter enables balanced DPSK detection. These modulator and demodulator are(More)
(250‐word limit) The rapid scaling of microprocessors has shifted the critical bottleneck of high‐performance computing systems from the computational units to the communication infrastructure. By taking advantage of the parallelism and capacity of dense wavelength‐division‐multiplexed (DWDM) technology, optical interconnects using nanophotonics offer a(More)
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a(More)
Silicon nanophotonics holds the promise of revolutionizing computing by enabling parallel architectures that combine unprecedented performance and ease of use with affordable power consumption. Here we describe the results of a detailed multiyear design study of dense wavelength division multiplexing (DWDM) on-chip and off-chip interconnects and the device(More)
The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ∼70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon line show antibunching, a signature that the collected(More)
We present a theoretical and experimental comparison of spontaneous parametric down-conversion in periodically poled waveguides and bulk KTP crystals. We measured a waveguide pair generation rate of 2.9.10(6) pairs/s per mWof pump in a 1-nm band: more than 50 times higher than the bulk crystal generation rate.