Raymond E. Goldstein

Learn More
A stiff one-armed swimmer in glycerine goes nowhere, but if its arm is elastic, exerting a restorative torque proportional to local curvature, the swimmer can go on its way. Considering this happy consequence and the principles of elasticity, we study a hyperdiffusion equation for the shape of the elastica in viscous flow, find solutions for impulsive or(More)
Aerobic bacteria often live in thin fluid layers near solid-air-water contact lines, in which the biology of chemotaxis, metabolism, and cell-cell signaling is intimately connected to the physics of buoyancy, diffusion, and mixing. Using the geometry of a sessile drop, we demonstrate in suspensions of Bacillus subtilis the self-organized generation of a(More)
Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar motion and DNA transcription and replication, we study the overdamped nonlinear dynamics of a rotationally forced filament with twist and bend elasticity. Competition between twist injection, twist diffusion, and writhing instabilities is described by coupled PDEs for twist(More)
In Drosophila photoreceptors, phospholipase C (PLC) and other signalling components form multiprotein structures through the PDZ scaffold protein INAD. Association between PLC and INAD is important for termination of responses to light; the underlying mechanism is, however, unclear. Here we report that the maintenance of large amounts of PLC in the(More)
Benefits, costs, and requirements accompany the transition from motile totipotent unicellular organisms to multicellular organisms having cells specialized into reproductive (germ) and vegetative (sterile soma) functions such as motility. In flagellated colonial organisms such as the volvocalean green algae, organized beating by the somatic cells' flagella(More)
Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension(More)
Supercoiling motions that accompany the growth of bacterial macrofibers (multicellular filamentous structures formed in B. subtilis by cell division without separation) are responsible for rolling, pivoting, and walking of fibers on a surface. Fibers possess a fulcrum about which they pivot and step in a chiral manner; forces and torques associated with(More)
In microswimmer suspensions locomotion necessarily generates fluid motion, and it is known that such flows can lead to collective behavior from unbiased swimming. We examine the complementary problem of how chemotaxis is affected by self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis to the flows of collective swimming shows separate(More)
When a helical bacterial flagellum, clamped at one end, is placed in an external flow, it has been observed that regions of the flagellum transform to the opposite chirality, and travel as pulses down the length of the filament, the process repeating periodically [H. Hotani, J. Mol. Biol. 156, 791 (1982)]]. We propose a theory for this phenomenon based on a(More)
Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two(More)