Learn More
OBJECTIVE How hexanucleotide (GGGGCC) repeat expansions in C9ORF72 cause amyotrophic lateral sclerosis (ALS) remains poorly understood. Both gain- and loss-of-function mechanisms have been proposed. Evidence supporting these mechanisms in vivo is, however, incomplete. Here we determined the effect of C9orf72 loss-of-function in mice. METHODS We generated(More)
Circadian rhythms are responsive to external and internal cues, light and metabolism being among the most important. In mammals, the light signal is sensed by the retina and transmitted to the suprachiasmatic nucleus (SCN) master clock [1], where it is integrated into the molecular oscillator via regulation of clock gene transcription. The SCN synchronizes(More)
BACKGROUND Treatment with anti-B cell antibody rituximab may ameliorate the disease course in a subgroup of patients with polyneuropathy associated with IgM monoclonal gammopathy. Polymorphisms of leukocyte IgG receptors (FcγR) that influence efficiency of antibody-dependent cell-mediated cytotoxicity determine rituximab efficacy in patients with lymphoma(More)
To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and(More)
The LIM homeodomain transcription factor Lmx1a is a very potent inducer of stem cells towards dopaminergic neurons. Despite several studies on the function of this gene, the exact in vivo role of Lmx1a in mesodiencephalic dopamine (mdDA) neuronal specification is still not understood. To analyse the genes functioning downstream of Lmx1a, we performed(More)
Recently it was discovered that mutations in the UBQLN2 gene were a cause of an X-linked dominant type of familial amyotrophic lateral sclerosis (ALS). We investigated the frequency of mutations in this gene in a cohort of 92 families with ALS in the Netherlands. Eight families were excluded because of male-to-male transmission. In the remaining 84 familial(More)
Development and function of mesodiencephalic dopaminergic (mdDA) neurons has received a lot of scientific interest since these neurons are critically involved in neurological diseases as Parkinson and psychiatric diseases as schizophrenia, depression and attention deficit hyperactivity disorder (ADHD). The understanding of the molecular processes that lead(More)
The forkhead transcription factor FoxO6 is prominently expressed during development of the murine neocortex. However, its function in cortical development is as yet unknown. We now demonstrate that cortical development is altered in FoxO6+/- and FoxO6-/- mice, showing migrating neurons halted in the intermediate zone. Using a FoxO6-directed siRNA approach,(More)
  • 1