Raymond A Frizzell

Learn More
Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous(More)
Recombinant adeno-associated viruses (AAV) are among the most promising vectors for gene therapy of genetic diseases, including cystic fibrosis (CF). However, because of its small genome size, the capacity of AAV to package a therapeutic gene is limited. The efficiency of packaging the cystic fibrosis transmembrane conductance Regulator (CFTR) gene into AAV(More)
In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that beta-adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis(More)
Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a protein kinase A (PKA)-activated epithelial anion channel involved in salt and fluid transport in multiple organs, including the lung. Most CF mutations either reduce the number of CFTR channels at the cell surface(More)
Chemical modulation of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACi) is an increasingly important approach for modifying the etiology of human disease. Loss-of-function diseases arise as a consequence of protein misfolding and degradation, which lead to system failures. The DeltaF508 mutation in cystic fibrosis transmembrane conductance(More)
We studied the cAMP- and Ca2(+)-activated secretory Cl- conductances in the Cl(-)-secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl- and K+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl- current 2-15 times with no change in K+ current. The current-voltage relation for cAMP-activated Cl-(More)
The cystic fibrosis transmembrane conductance regulator (CFTR) is associated with expression of a chloride conductance that is defective in cystic fibrosis (CF). Xenopus oocytes injected with RNA coding for CFTR that contained mutations in the first nucleotide binding fold (NBF1) expressed chloride currents in response to raising adenosine(More)
The cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A- and ATP-regulated Cl- channel located in the apical membranes of epithelial cells. Previously Sheppard and Welsh (J. Gen. Physiol. 100: 573-591, 1992) showed that glibenclamide, a compound which binds to the sulfonylurea receptor and thus blocks nucleotide-dependent K+(More)
We evaluated the effects of the novel benzimidazolone, 1-ethyl-2-benzimidazolinone (1-EBIO), on Cl- secretion across T84 monolayers. 1-EBIO stimulated a sustained Cl- secretory response at a half-maximal effective concentration of 490 microM. Charybdotoxin (CTX) inhibited the 1-EBIO-induced short-circuit current (Isc) with an inhibitory constant (Ki) of 3.6(More)
Chloride impermeability of epithelial cells can account for many of the experimental and clinical manifestations of cystic fibrosis (CF). Activation of apical-membrane Cl- channels by cyclic AMP-mediated stimuli is defective in CF airway epithelial cells, despite normal agonist-induced increases in cellular cAMP levels. This defect in Cl- channel regulation(More)