Ray W Y Poon

Learn More
Nickel-titanium (NiTi) shape memory alloys are increasingly being used in orthopedic applications. However, there is a concern that Ni is harmful to the human body. We have recently investigated the use of nitrogen, or oxygen plasma immersion ion implantation to mitigate this deleterious effect. Our results reveal that the near-surface Ni concentration in(More)
Stainless steel and titanium alloys are the most common metallic orthopedic materials. Recently, nickel-titanium (NiTi) shape memory alloys have attracted much attention due to their shape memory effect and super-elasticity. However, this alloy consists of equal amounts of nickel and titanium, and nickel is a well known sensitizer to cause allergy or other(More)
Nickel-titanium shape memory alloys are promising materials in orthopedic applications because of their unique properties. However, for prolonged use in a human body, deterioration of the corrosion resistance of the materials becomes a critical issue because of the increasing possibility of deleterious ions released from the substrate to living tissues. We(More)
Nickel-titanium (NiTi) shape memory alloys possess super-elasticity in addition to the well-known shape memory effect and are potentially suitable for orthopedic implants. However, a critical concern is the release of harmful Ni ions from the implants into the living tissues. We propose to enhance the corrosion resistance and other surface and biological(More)
Bio-activation of titanium surface by Na plasma immersion ion implantation and deposition (PIII and D) is illustrated by precipitation of calcium phosphate and cell culture. The bioactivity of the plasma-implanted titanium is compared to that of the untreated, Na beam-line implanted and NaOH-treated titanium samples. Our data show that the samples can be(More)
Hydrogen in silicon has been widely applied in semiconductor fields. In this paper, the application of hydrogen-implanted silicon wafer in biomedical fields was explored by investigating its bioactivity. Hydrogen implanted silicon wafers were prepared using plasma immersion ion implantation. The surface structures of the 1.4 x 10(17) cm(-2)(More)
  • 1