Learn More
A revised computational model of the inner-hair cell (IHC) and auditory-nerve (AN) complex is presented and evaluated. Building on previous models, the algorithm is intended as a component for use in more comprehensive models of the auditory periphery. It combines smaller components that aim to be faithful to physiology in so far as is practicable and(More)
A revised computational model of the inner-hair cell (IHC) and auditory-nerve (AN) complex was recently presented [Sumner et al., J. Acoust. Soc. Am. 111, 2178-2188 (2002)]. One key improvement is that the model reproduces the rate-intensity functions of low- (LSR), medium- (MSR), and high-spontaneous rate (HSR) fibers in the guinea-pig. Here we describe(More)
The aim of this study is to produce a functional model of the auditory nerve (AN) response of the guinea-pig that reproduces a wide range of important responses to auditory stimulation. The model is intended for use as an input to larger scale models of auditory processing in the brain-stem. A dual-resonance nonlinear filter architecture is used to(More)
Cochlear nonlinearity was estimated over a wide range of center frequencies and levels in listeners with normal hearing, using a forward-masking method. For a fixed low-level probe, the masker level required to mask the probe was measured as a function of the masker-probe interval, to produce a temporal masking curve (TMC). TMCs were measured for probe(More)
Stimulation of the olivocochlear bundle reduces basilar membrane displacement, driven auditory nerve activity, and compound action potential (CAP) response to acoustic stimulation. These effects were simulated using a computer model of the auditory periphery. The model simulates the medial efferent activity by attenuating the basilar membrane response. The(More)
The neural mechanisms underlying the ability of human listeners to recognize speech in the presence of background noise are still imperfectly understood. However, there is mounting evidence that the medial olivocochlear system plays an important role, via efferents that exert a suppressive effect on the response of the basilar membrane. The current paper(More)
We recently reported that direct subjective ratings of the sense of presence are potentially unstable and can be biased by previous judgments of the same stimuli (Free-man et al., 1999). Objective measures of the behavioral realism elicited by a display offer an alternative to subjective ratings. Behavioral measures and presence are linked by the premise(More)
A computer model of the auditory periphery was used to address the question of what constitutes the physiological substrate of absolute auditory threshold. The model was first evaluated to show that it is consistent with experimental findings that auditory-nerve fiber spikes can be predicted to occur when the running integral of stimulus pressure reaches(More)
A computational model of nervous activity in the auditory nerve, cochlear nucleus, and inferior colliculus is presented and evaluated in terms of its ability to simulate psychophysically-measured pitch perception. The model has a similar architecture to previous autocorrelation models except that the mathematical operations of autocorrelation are replaced(More)
The potential contribution of the peripheral auditory efferent system to our understanding of speech in a background of competing noise was studied using a computer model of the auditory periphery and assessed using an automatic speech recognition system. A previous study had shown that a fixed efferent attenuation applied to all channels of a multi-channel(More)