Learn More
We describe the development, current features, and some directions for future development of the Amber package of computer programs. This package evolved from a program that was constructed in the late 1970s to do Assisted Model Building with Energy Refinement, and now contains a group of programs embodying a number of powerful tools of modern computational(More)
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated(More)
A major goal in neuroscience is the development of optical reporters of membrane potential that are easy to use, have limited phototoxicity, and achieve the speed and sensitivity necessary for detection of individual action potentials in single neurons. Here we present a novel, two-component optical approach that attains these goals. By combining DiO, a(More)
We report here an efficient implementation of the finite difference Poisson-Boltzmann solvent model based on the Modified Incomplete Cholsky Conjugate Gradient algorithm, which gives rather impressive performance for both static and dynamic systems. This is achieved by implementing the algorithm with Eisenstat's two optimizations, utilizing the(More)
We have developed a new-generation Amber united-atom force field for simulations involving highly demanding conformational sampling such as protein folding and protein-protein binding. In the new united-atom force field, all hydrogens on aliphatic carbons in all amino acids are united with carbons except those on Calpha. Our choice of explicit(More)
We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth(More)
Many biomedical problems relate to mutant functional properties across a sequence space of interest, e.g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for cancer treatments from p53 mutant rescue. We devised a(More)
The optimizer developed for the Mining Minima algorithm, which uses ideas from Genetic Algorithms, the Global Underestimator Method, and Poling, has been adapted for use in ligand-receptor docking. The present study describes the resulting methodology and evaluates its accuracy and speed for 27 test systems. The performance of the new docking algorithm(More)
The wide use of lattice-sum strategies in biomolecular simulations has raised many questions on potential artifacts in these strategies. One interesting question is the artifacts in the counterion distributions of highly charged systems. As one would anticipate, Coulombic interactions under the periodic boundary condition may deviate noticeably from those(More)