Ray Edward Benson

Learn More
We describe a "protein knockout" technique that can be used to identify essential proteins in bacteria. This technique uses phage display to select peptides that bind specifically to purified target proteins. The peptides are expressed intracellularly and cause inhibition of growth when the protein is essential. In this study, peptides that each(More)
To promote healing of many orthopedic injuries, tissue engineering approaches are being developed that combine growth factors such as Bone Morphogenetic Proteins (BMP) with biomaterial carriers. Although these technologies have shown great promise, they still face limitations. We describe a generalized approach to create target-specific modular peptides(More)
We describe here a novel multi-affinity tag vector that can be used to produce high levels of soluble, in vivo biotinylated proteins in Escherichia coli. This system combines the solubility-enhancing ability of maltose-binding protein (MBP), the versatility of the hexahistidine tag (His(6)), and the site-specific in vivo biotinylation of a 15-amino acid tag(More)
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) is a key enzyme in a biosynthetic pathway for isoprenoids that is unique to eubacteria and plants. Dxr catalyzes the rearrangement and NADPH-dependent reduction of 1-deoxy-D-xylulose 5-phosphate to 2-C-methyl-D-erythritol 4-phosphate. The authors have purified Escherichia coli Dxr and devised a(More)
The availability of high quality probes for specific protein targets is fundamental to the investigation of their function and their validation as therapeutic targets. We report the utilization of a dedicated chemoproteomic assay platform combining affinity enrichment technology with high-resolution protein mass spectrometry to the discovery of a novel(More)
  • 1