Ray Dybzinski

Learn More
In a 10-year (1996-2005) biodiversity experiment, the mechanisms underlying the increasingly positive effect of biodiversity on plant biomass production shifted from sampling to complementarity over time. The effect of diversity on plant biomass was associated primarily with the accumulation of higher total plant nitrogen pools (N g m-2) and secondarily(More)
An 11-year competition experiment among combinations of six prairie perennial plant species showed that resource competition theory generally predicted the long-term outcome of competition. We grew each species in replicated monocultures to determine its requirements for soil nitrate (R*) and light (I*). In six pairwise combinations, the species with the(More)
We review approaches to predicting carbon and nitrogen allocation in forest models in terms of their underlying assumptions and their resulting strengths and limitations. Empirical and allometric methods are easily developed and computationally efficient, but lack the power of evolution-based approaches to explain and predict multifaceted effects of(More)
Most explanations for the positive effect of plant species diversity on productivity have focused on the efficiency of resource use, implicitly assuming that resource supply is constant. To test this assumption, we grew seedlings of Echinacea purpurea in soil collected beneath 10-year-old, experimental plant communities containing one, two, four, eight, or(More)
Abstract The dependence of forest productivity and community composition on rainfall is the result of complex interactions at multiple scales, from the physiology of carbon gain and water loss to competition among individuals and species. In an effort to understand the role of these multiscale interactions in the dependence of forest structure on rainfall,(More)
Changes in resource availability often cause competitively driven changes in tree allocation to foliage, wood, and fine roots, either via plastic changes within individuals or through turnover of individuals with differing strategies. Here, we investigate how optimally competitive tree allocation should change in response to elevated atmospheric CO2 along a(More)
We present a model that scales from the physiological and structural traits of individual trees competing for light and nitrogen across a gradient of soil nitrogen to their community-level consequences. The model predicts the most competitive (i.e., the evolutionarily stable strategy [ESS]) allocations to foliage, wood, and fine roots for canopy and(More)
Almost all models of plant resource limitation are grounded in either one or both of two simple conceptual models: Liebig's Minimum Hypothesis (LMH), the idea that plants are limited by the resource in shortest supply, and the Multiple Limitation Hypothesis (MLH), the idea that plants should adjust to their environment so that all essential resources are(More)
The fixed and plastic traits possessed by a plant, which may be collectively thought of as its strategy, are commonly modelled as density-independent adaptations to its environment. However, plant strategies may also represent density- or frequency-dependent adaptations to the strategies used by neighbours. Game theory provides the tools to characterise(More)
Many plant communities are recruitment limited, which may occur because there are either too few seeds to fill available microsites, too few available microsites, or both. In a recruitment-limited, Minnesota, USA old field, we tested among these alternatives in a three-phase study. In phase 1, we estimated the production of late-successional forb and C4(More)