Learn More
Plant transformation technology is frequently the rate-limiting step in gene function analysis in non-model plants. An important tool for root biologists is the Agrobacterium rhizogenes-derived composite plant, which has made possible genetic analyses in a wide variety of transformation recalcitrant dicotyledonous plants. The novel, rapid and inexpensive ex(More)
Forisomes are Ca(2+)-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as 'FOR' proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and(More)
We have constructed an African cassava mosaic virus (ACMV) based gene-silencing vector as a reverse genetics tool for gene function analysis in cassava. The vector carrying a fragment from the Nicotiana tabacumsulfur gene (su), encoding one unit of the chloroplast enzyme magnesium chelatase, was used to induce the silencing of the cassava orthologous gene(More)
The embryo of Arabidopsis seeds is symplasmically isolated from the surrounding seed coat and endosperm, and uptake of nutrients from the seed apoplast is required for embryo growth and storage reserve accumulation. With the aim of understanding the importance of nitrogen (N) uptake into developing embryos, we analysed two mutants of AAP1 (At1g58360), an(More)
Limitations in transformation capability can be a significant barrier in making advances in our understanding of gene function through the use of transgenics. To this end we have developed both tissue culture and non-tissue culture-based methodologies for the production of transgenic roots on wild-type shoots (composite plants). Composite plants are(More)
Legumes can access atmospheric nitrogen through a symbiotic relationship with nitrogen-fixing bacteroids that reside in root nodules. In soybean, the products of fixation are the ureides allantoin and allantoic acid, which are also the dominant long-distance transport forms of nitrogen from nodules to the shoot. Movement of nitrogen assimilates out of the(More)
Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization(More)
The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens(More)