Learn More
The metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial(More)
The nitrogen fixation (nif) genes of Klebsiella pneumoniae are specifically regulated by the products of the nifLA operon. We have located the promoter of this operon, and identified sequences required for nifLA transcription. Transcription from this promoter is shown to be positively regulated by the ntrC gene product (which coordinates the expression of(More)
Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif(More)
The transcriptional regulatory protein Fnr, acts as an intracellular redox sensor regulating a wide range of genes in response to changes in oxygen levels. Genome sequencing of Herbaspirillum seropedicae SmR1 revealed the presence of three fnr-like genes. In this study we have constructed single, double and triple fnr deletion mutant strains of H.(More)
Nitric oxide (NO), synthesized in eukaryotes by the NO synthases, has multiple roles in signalling pathways and in protection against pathogens. Pathogenic microorganisms have apparently evolved defence mechanisms that counteract the effects of NO and related reactive nitrogen species. Regulatory proteins that sense NO mediate the primary response to NO and(More)
In Azotobacter vinelandii, activation of nif gene expression by the transcriptional regulatory enhancer binding protein NIFA is controlled by the sensor protein NIFL in response to changes in levels of oxygen and fixed nitrogen in vivo. NIFL is a novel redox-sensing flavoprotein which is also responsive to adenosine nucleotides in vitro. Inhibition of NIFA(More)
The redox-sensing flavoprotein NifL inhibits the activity of the nitrogen fixation (nif)-specific transcriptional activator NifA in Azotobacter vinelandii in response to molecular oxygen and fixed nitrogen. Although the mechanism whereby the A. vinelandii NifL-NifA system responds to fixed nitrogen in vivo is unknown, the glnK gene, which encodes a PII-like(More)
The ability of bacteria to respond to a multitude of environmental signals and integrate these signals to trigger adaptive responses provides a successful strategy for survival in rapidly changing environments. In many cases integration can be achieved via the interlinking of different regulatory circuits in which various master regulators respond to(More)
Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters.(More)
The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has(More)