Learn More
A mutant strain (39E H8) of Thermoanaerobacter ethanolicus that displayed high (8% [vol/vol]) ethanol tolerance for growth was developed and characterized in comparison to the wild-type strain (39E), which lacks alcohol tolerance (<1.5% [vol/vol]). The mutant strain, unlike the wild type, lacked primary alcohol dehydrogenase and was able to increase the(More)
exo mutants of Rhizobium meliloti SU47, which fail to secrete acidic extracellular polysaccharide (EPS), induce Fix- nodules on alfalfa. However, mutants of R. meliloti Rm41 carrying the same exo lesions induce normal Fix+ nodules. We show that such induction is due to a gene from strain Rm41, which we call lpsZ+, that is missing in strain SU47. lpsZ+ does(More)
Lipopolysaccharides from Gram-negative bacteria interact with the mammalian immune system to trigger a cascade of physiological events leading to a shock syndrome which results in the death in over 70% of cases of severe shock. It is known that the supramolecular structures of lipopolysaccharide aggregates are critical contributors to their biological(More)
Several common links between the structural chemistry of the chitolipooligosaccharides of Rhizobium and the general rhizobial membrane lipid and lipopolysaccharide chemistry of these bacteria have been uncovered. Aspects of common chemistry include sulfation, methylation, and the position and extent of fatty acyl chain unsaturation. We find that bacteria(More)
A new family of alpha,omega-dicarboxylic, very long chain fatty acids was isolated and characterized from the lipids of thermophilic anaerobic eubacterium, Thermoanaerobacter ethanolicus 39E. After the isolation of the membrane, the fatty acyl components were converted to methyl esters by acid-catalyzed methanolysis. The esterified fatty acyl components(More)
Methanobacterium formicicum and Methanosarcina mazeii are two prevalent species isolated from an anaerobic granular consortium grown on a fatty acid mixture. The extracellular polysaccharides (EPS) were extracted from Methanobacterium formicicum and Methanosarcina mazeii and from the methanogenic granules to examine their role in granular development. The(More)
Lipopolysaccharides (LPSs) isolated from several strains of Rhizobium, Bradyrhizobium, Agrobacterium, and Azorhizobium were screened for the presence of 27-hydroxyoctacosanoic acid. The LPSs from all strains, with the exception of Azorhizobium caulinodans, contained various amounts of this long-chain hydroxy fatty acid in the lipid A fractions. Analysis of(More)
The general view on Rhizobium chitolipooligosaccharides (CLOS) is that they are made in very low levels as diffusible molecules and are primarily secreted by the bacteria into the extracellular milieu where they interact with the host. However, the structural and predicted physicochemical properties of these amphiphilic molecules led us to postulate that(More)
The o-nitrophenyl group, a protecting group with latent activation potential, was used as a protecting group for the glycosidic position. It is stable to common conditions used in synthesis and can be activated for displacement and glycoside formation by an alcohol, using zinc chloride as a catalyst. Good to excellent yields of beta-glycosides of the(More)
The complete structure of the acidic, extracellular, capsular polysaccharide of Rhizobium trifolii 843 has been elucidated by a combination of chemical, enzymic, and spectroscopic methods, confirming an earlier proposed sugar sequence and assigning the locations of the acyl substituents. The polysaccharide was depolymerized by a lyase into octasaccharide(More)