Ravshan Z. Sabirov

Learn More
A new method of pore size determination is presented. The results of applying this simple method to ion channels formed by staphylococcal alpha-toxin and its N-terminal fragment as well as to cholera toxin channels are shown. The advantages and the difficulties of this method are discussed. It was found that (i) the mobility of ions in solutions depends(More)
Macula densa cells are unique renal biosensor cells that detect changes in luminal NaCl concentration ([NaCl](L)) and transmit signals to the mesangial cellafferent arteriolar complex. They are the critical link between renal salt and water excretion and glomerular hemodynamics, thus playing a key role in regulation of body fluid volume. Since(More)
ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger-for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore(More)
It is known that the level of ATP in the interstitial spaces within the heart during ischaemia or hypoxia is elevated due to its release from a number of cell types, including cardiomyocytes. However, the mechanism by which ATP is released from these myocytes is not known. In this study, we examined a possible involvement of the ATP-conductive maxi-anion(More)
Apoptosis is a distinct form of cell death, which requires energy. Here, we made real-time continuous measurements of the cytosolic ATP level throughout the apoptotic process in intact HeLa, PC12 and U937 cells transfected with the firefly luciferase gene. Apoptotic stimuli (staurosporine (STS), tumor necrosis factor alpha (TNFalpha), etoposide) induced(More)
Staphylotoxin channel appears to be predominantly anion-selective with non-linear and asymmetric current-voltage characteristics (CVC) at neutral pH. Increased salt concentrations induce linearity and asymmetry of CVC and loss of selectivity. At lower pH both the channel conductivity and anion selectivity increase. Higher temperatures raise the channel(More)
ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit(More)
Partitioning of ethylene glycol and its polymeric forms into the pore of the volume-sensitive outwardly rectifying (VSOR) anion channel was studied to assess the pore size. Polyethylene glycol (PEG) PEG 200-300 (Rh = 0.27-0.53 nm) effectively suppressed the single-channel currents, whereas PEG 400-4000 (Rh = 0.62-1.91 nm) had little or no effect. Since all(More)
In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl(-) channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around +/-25 mV. The whole-cell current was(More)
In the present study, we aimed to evaluate the pathways contributing to ATP release from mouse astrocytes during hypoosmotic stress. We first examined the expression of mRNAs for proteins constituting possible ATP-releasing pathways that have been suggested over the past several years. In RT-PCR analysis using both control and osmotically swollen(More)