Ravindra K Pandey

Learn More
In recent years several review articles and books have been published on the use of porphyrin-based compounds in photodynamic therapy (PDT). This critical review is focused on (i) the basic concept of PDT, (ii) advantages of long-wavelength absorbing photosensitizers (PS), (iii) a brief discussion on recent advances in developing PDT agents, and (iv) the(More)
We report a novel nanoformulation of a photosensitizer (PS), for photodynamic therapy (PDT) of cancer, where the PS molecules are covalently incorporated into organically modified silica (ORMOSIL) nanoparticles. We found that the covalently incorporated PS molecules retained their spectroscopic and functional properties and could robustly generate cytotoxic(More)
Photosensitizers (PS) synthesized with the aim of optimizing photodynamic therapy (PDT) of tumors do not always fulfill their potential when tested in vitro and in vivo in different tumor models. The ATP-dependent transporter ABCG2, a multidrug resistant pump expressed at variable levels in cancerous cells, can bind and efflux a wide range of structurally(More)
We report energy-transferring organically modified silica nanoparticles for two-photon photodynamic therapy. These nanoparticles co-encapsulate two-photon fluorescent dye nanoaggregates as an energy up-converting donor and a photosensitizing PDT drug as an acceptor. They combine two features: (i) aggregation-enhanced two-photon absorption and emission(More)
A first report on the synthesis and biological evaluation of the beta-galactose-conjugated purpurinimides (a class of chlorins containing a six-membered fused imide ring system) as Gal-1 (galectin-1) recognized photosensitizers, prepared from purpurin-N-propargylimide via enyne metathesis, is discussed. On the basis of examination of the available crystal(More)
We report the design, synthesis using nanochemistry, and characterization of a novel multifunctional polymeric micelle-based nanocarrier system, which demonstrates combined function of magnetophoretically guided drug delivery together with light-activated photodynamic therapy. Specifically, the nanocarrier consists of polymeric micelles of(More)
An in vivo quantitative structure-activity relationship (QSAR) study was carried out on a congeneric series of pyropheophorbide photosensitizers to identify structural features critical for their antitumor activity in photodynamic therapy (PDT). The structural elements evaluated in this study include the length and shape (alkyl, alkenyl, cyclic, and(More)
The synthesis, photophysical characteristics, in vivo photosensitizing efficacy, human serum albumin (HSA) binding properties, and skin phototoxicity of some stable bacteriochlorins were investigated. The novel bacteriochlorins, obtained from chlorophyll-a, have long-wavelength absorptions in the range lambda max = 734-758 nm. Preferential migration of(More)
The combination of the new photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) and laser light of wavelength 665 nm showed antitumor activity against two s.c.-implanted murine tumors. HPPH also sensitized normal mouse foot tissue to light but photosensitivity decreased rapidly with time after HPPH administration. Mechanistic(More)
We report the results of our first-principles study based on density functional theory on the interaction of the nucleic acid base molecules adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U), with a single-walled carbon nanotube (CNT). Specifically, the focus is on the physisorption of base molecules on the outer wall of a (5, 0) metallic(More)