Ravi S. Kane

Learn More
There has been an increasing interest in understanding how the mechanical properties of the microenvironment influence stem cell fate. We describe studies of the proliferation and differentiation of neural stem cells (NSCs) encapsulated within three-dimensional scaffolds--alginate hydrogels--whose elastic moduli were varied over two orders of magnitude. The(More)
The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are(More)
We report an optogenetic method based on Arabidopsis thaliana cryptochrome 2 for rapid and reversible protein oligomerization in response to blue light. We demonstrated its utility by photoactivating the β-catenin pathway, achieving a transcriptional response higher than that obtained with the natural ligand Wnt3a. We also demonstrated the modularity of(More)
We describe the structure, activity, and stability of enzymes covalently attached to single-walled carbon nanotubes (SWNTs). Conjugates of SWNTs with three functionally unrelated enzymes-horseradish peroxidase, subtilisin Carlsberg, and chicken egg white lysozyme-were found to be soluble in aqueous solutions. Furthermore, characterization of the secondary(More)
We report the activity, stability, and reusability of enzyme-carbon nanotube conjugates in aqueous solutions. A variety of enzymes were covalently attached to oxidized multi-walled carbon nanotubes (MWNTs). These conjugates were soluble in aqueous buffer, retained a high fraction of their native activity, and were stable at higher temperatures relative to(More)
After spinal cord injury (SCI), loss of cells and damage to ascending and descending tracts can result in paralysis. Current treatments for SCI are based on patient stabilization, and much-needed regenerative therapies are still under development. To activate and instruct stem and progenitor cells or injured tissue to aid SCI repair, it is important to(More)
Several protein conformational disorders (Parkinson and prion diseases) are linked to aberrant folding of proteins into prefibrillar oligomers and amyloid fibrils. Although prefibrillar oligomers are more toxic than their fibrillar counterparts, it is difficult to decouple the origin of their dissimilar toxicity because oligomers and fibrils differ both in(More)
Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization(More)
Capillary forces arising during the evaporation of liquids from dense carbon nanotube arrays are used to reassemble the nanotubes into two-dimensional contiguous cellular foams. The stable nanotube foams can be elastically deformed, transferred to other substrates, or floated out to produce free-standing macroscopic fabrics. The lightweight cellular foams(More)
We have examined the structure and function of two enzymes, alpha-chymotrypsin (CT) and soybean peroxidase (SBP), adsorbed onto single-walled carbon nanotubes (SWNTs). SBP retained up to 30% of its native activity upon adsorption, while the adsorbed CT retained only 1% of its native activity. Analysis of the secondary structure of the proteins via FT-IR(More)