Learn More
Recent years have witnessed a dramatic increase in the quantity of image data collected, due to advances in fields such as medical imaging, reconnaissance, surveillance, astronomy, multimedia etc. With this increase has come the need to be able to store, transmit, and query large volumes of image data efficiently. A common operation on image databases is(More)
An optimization criterion is presented for discriminant analysis. The criterion extends the optimization criteria of the classical Linear Discriminant Analysis (LDA) through the use of the pseudoinverse when the scatter matrices are singular. It is applicable regardless of the relative sizes of the data dimension and sample size, overcoming a limitation of(More)
Effective diagnosis of Alzheimer's disease (AD) is of primary importance in biomedical research. Recent studies have demonstrated that neuroimaging parameters are sensitive and consistent measures of AD. In addition, genetic and demographic information have also been successfully used for detecting the onset and progression of AD. The research so far has(More)
Classical Linear Discriminant Analysis (LDA) is not applicable for small sample size problems due to the singularity of the scatter matrices involved. Regularized LDA (RLDA) provides a simple strategy to overcome the singularity problem by applying a regularization term, which is commonly estimated via cross-validation from a set of candidates. However,(More)
Dimension reduction is critical for many database and data mining applications, such as efficient storage and retrieval of high-dimensional data. In the literature, a well-known dimension reduction scheme is Linear Discriminant Analysis (LDA). The common aspect of previously proposed LDA based algorithms is the use of Singular Value Decomposition (SVD). Due(More)
High-dimensional data appear in many applications of data mining, machine learning, and bioin-formatics. Feature reduction is commonly applied as a preprocessing step to overcome the curse of dimensionality. Uncorrelated Linear Discriminant Analysis (ULDA) was recently proposed for feature reduction. The extracted features via ULDA were shown to be(More)