Learn More
With increasing adoption of electronic health records (EHRs), there is an opportunity to use the free-text portion of EHRs for pharmacovigilance. We present novel methods that annotate the unstructured clinical notes and transform them into a deidentified patient-feature matrix encoded using medical terminologies. We demonstrate the use of the resulting(More)
Multi-item adverse drug event (ADE) associations are associations relating multiple drugs to possibly multiple adverse events. The current standard in pharmacovigilance is bivariate association analysis, where each single drug-adverse effect combination is studied separately. The importance and difficulty in the detection of multi-item ADE associations was(More)
An important goal of the health system is to identify new adverse drug events (ADEs) in the postapproval period. Datamining methods that can transform data into meaningful knowledge to inform patient safety have proven essential for this purpose. New opportunities have emerged to harness data sources that have not been used within the traditional framework.(More)
Signal-detection algorithms (SDAs) are recognized as vital tools in pharmacovigilance. However, their performance characteristics are generally unknown. By leveraging a unique gold standard recently made public by the Observational Medical Outcomes Partnership (OMOP) and by conducting a unique systematic evaluation, we provide new insights into the(More)
The promise of augmenting pharmacovigilance with patient-generated data drawn from the Internet was called out by a scientific committee charged with conducting a review of the current and planned pharmacovigilance practices of the US Food and Drug Administration (FDA). To this end, we present a study on harnessing behavioral data drawn from Internet search(More)
In this article, we present a new pharmacovigilance data mining technique based on the biclustering paradigm, which is designed to identify drug groups that share a common set of adverse events (AEs) in the spontaneous reporting system (SRS) of the US Food and Drug Administration (FDA). A taxonomy of biclusters is developed, revealing that a significant(More)
Adverse drug events (ADEs) create a serious problem causing substantial harm to patients. An executable standardized knowledgebase of drug-ADE relations which is publicly available would be valuable so that it could be used for ADE detection. The literature is an important source that could be used to generate a knowledgebase of drug-ADE pairs. In this(More)
BACKGROUND AND OBJECTIVE Electronic health records (EHRs) are increasingly being used to complement the FDA Adverse Event Reporting System (FAERS) and to enable active pharmacovigilance. Over 30% of all adverse drug reactions are caused by drug-drug interactions (DDIs) and result in significant morbidity every year, making their early identification vital.(More)
BACKGROUND Drug-drug interactions (DDIs) are responsible for many serious adverse events; their detection is crucial for patient safety but is very challenging. Currently, the US Food and Drug Administration and pharmaceutical companies are showing great interest in the development of improved tools for identifying DDIs. METHODS We present a new(More)
The identification of post-marketed adverse drug events (ADEs) is paramount to health care. Spontaneous reporting systems (SRS) are currently the mainstay in pharmacovigilance. Recently, electronic health records (EHRs) have emerged as a promising and effective complementary resource to SRS, as they contain a more complete record of the patient, and do not(More)