Raul Narciso Carvalho Guedes

Learn More
BACKGROUND Insecticide resistance is a likely cause of field control failures of Tuta absoluta, but the subject has been little studied. Therefore, resistance to ten insecticides was surveyed in seven representative field populations of this species. The likelihood of control failures was assessed, as well as weather influence and the spatial dependence of(More)
Although invertebrates generally have a low public profile, the honey bee, Apis mellifera L., is a flagship species whose popularity likely derives from the products it provides and its perceived ecological services. Therefore, the raging debate regarding honey bee decline has surpassed the realm of beekeepers, academia, industry and regulatory agencies and(More)
Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic(More)
The toxicity of three insecticides frequently used in Neotropical tomato cultivation (abamectin, deltamethrin, and methamidophos) was estimated on foragers of the Neotropical stingless bee Melipona quadrifasciata (Lep.) and the honey bee Apis mellifera (L.). Our results showed that the susceptibility varied significantly with the type of exposure(More)
Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. Nonetheless, only few studies have been carried out with pollinators, usually emphasizing the honeybee Apis mellifera and neglecting other important pollinator species such as the bumblebee Bombus terrestris. Here, lethal and sublethal effects of(More)
Because of their natural origin, biopesticides are assumed to be less harmful to beneficial insects, including bees, and therefore their use has been widely encouraged for crop protection. There is little evidence, however, to support this ingrained notion of biopesticide safety to pollinators. Because larval exposure is still largely unexplored in(More)
Enhanced reproductive output after sublethal insecticide exposure, including neonicotinoid exposure, has been reported in a diversity of arthropods. Suspicions of such a phenomenon in the Neotropical brown stink bug, Euschistus heros (Hemiptera: Pentatomidae), were sparked by the increasing densities of naturally occurring populations of this insect pest(More)
The toxicological stress induced by pesticides, particularly neonicotinoid insecticides, and its consequences in bees has been the focus of much recent attention, particularly for honey bees. However, the emphasis on honey bees and neonicotinoids has led to neglect of the relevance of stingless bees, the prevailing pollinators of natural and agricultural(More)
Insecticide resistance is an evolutionary response to insecticides and, as such, important for environmental biomonitoring and for pest management. Fitness disadvantage in the absence of insecticide is a frequent assumption in models of insecticide resistance evolution, which was observed in different insect species. Fitness studies are based in demographic(More)
This work aimed at identifying plant compounds with insecticidal activity against Diaphania hyalinata (L.) (Lepidoptera: Pyralidae), Musca domestica (L.) (Diptera: Muscidae), Periplaneta americana (L.) (Blattodea: Blattidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta(More)