Learn More
While much is known about intracellular signaling events in T cells when T cell receptors (TCRs) are engaged, the mechanism by which signaling is initiated is unclear. We have constructed defined oligomers of soluble antigen-major histocompatibility complex (MHC) molecules, the natural ligands for the TCR. Using these to stimulate specific T cells in vitro,(More)
Substitution with all naturally occurring L-amino acids at each of 11 residues of the IEk-restricted month cytochrome c (93-103) epitope has allowed us to analyze the requirements for MHC binding and T cell recognition to a level of definition not previously possible. Substitutions at only three positions systematically affect MHC binding and three others(More)
New mapping approaches construct ordered restriction maps from fluorescence microscope images of individual, endonuclease-digested DNA molecules. In optical mapping, molecules are elongated and fixed onto derivatized glass surfaces, preserving biochemical accessibility and fragment order after enzymatic digestion. Measurements of relative fluorescence(More)
We have compared the contribution of electrostatic forces in the binding of antigenic peptides to the class II MHC molecule, IEk, at weakly acidic (pH 5.4) and neutral (pH 7.5) pH values. The binding of specific moth cytochrome c (MCC) and hemoglobin (Hb) peptides to IEk is very sensitive to ionic strength at pH 7.5 but not at pH 5.4, indicating that the(More)
The dynamics of individual DNA molecules in a thin gel were studied with fluorescence microscopy. Driven by an electric field, molecules hooked around isolated obstacles and became extended. By analyzing molecular images, we identified the reptation tube and primitive chain. When the field was turned off, the molecules relaxed. The relaxation time tau1 and(More)
  • 1