Raul García

Learn More
In the yeast Saccharomyces cerevisiae, environmental stress conditions that damage the cell wall lead to activation of the so-called "compensatory mechanism," aimed at preserving cell integrity through a remodeling of this extracellular matrix. Here we used DNA microarrays to investigate the molecular basis of this response to two agents that induce(More)
Swimming exercises by weaning pups inhibited hypothalamic obesity onset and recovered sympathoadrenal axis activity, but this was not observed when exercise training was applied to young adult mice. However, the mechanisms producing this improved metabolism are still not fully understood. Low-intensity swimming training started at an early age and was(More)
The yeast cell wall integrity mitogen-activated protein kinase (CWI-MAPK) pathway is the main regulator of adaptation responses to cell wall stress in yeast. Here, we adopt a genomic approach to shed light on two aspects that are only partially understood, namely, the characterization of the gene functional catalog associated with CWI pathway activation and(More)
The yeast Debaryomyces hansenii is usually found in salty environments such as the sea and salted food. It is capable of accumulating sodium without being intoxicated even when potassium is present at low concentration in the environment. In addition, sodium improves growth and protects D. hansenii in the presence of additional stress factors such as high(More)
Two mitogen-activated protein kinase (MAPK) pathways, viz. the high-osmolarity glycerol (HOG) and the cell wall integrity (CWI) pathways, regulate stress responses in the yeast Saccharomyces cerevisiae. Whereas the former is mainly involved in adaptation of yeast cells to hyperosmotic stress, the latter is activated under conditions leading to cell wall(More)
Yeast mitogen-activated protein kinase (MAPK) signaling pathways transduce external stimuli into cellular responses very precisely. The MAPKs Slt2/Mpk1 and Hog1 regulate transcriptional responses of adaptation to cell wall and osmotic stresses, respectively. Unexpectedly, we observe that the activation of a cell wall integrity (CWI) response to the cell(More)
ETHNOPHARMACOLOGICAL RELEVANCE Leaves of Cecropia pachystachya are described in the folk medicine as possessing antitusive, expectorant, antiasthmatic and hypoglycemic effects. AIM OF THE STUDY To investigate the hypoglycemic and antioxidant effects of methanolic extract from the leaves of Cecropia pachystachya. The total amount of phenolic and flavonoids(More)
We are studying microenvironmental cues which contribute to neuroendocrine organ assembly and tissue-specific differentiation. As our in vitro model, we cultured rat adrenal medullary PC12 pheochromocytoma cells in a novel cell culture system, the NASA rotating wall vessel (RWV) bioreactors. This “simulated microgravity” environment in RWV bioreactors,(More)
The enormous amount of data available in public gene expression repositories such as Gene Expression Omnibus (GEO) offers an inestimable resource to explore gene expression programs across several organisms and conditions. This information can be used to discover experiments that induce similar or opposite gene expression patterns to a given query, which in(More)
The fungal cell wall forms a compact network whose integrity is essential for cell morphology and viability. Thus, fungal cells have evolved mechanisms to elicit adequate adaptive responses when cell wall integrity (CWI) is compromised. Functional genomic approaches provide a unique opportunity to globally characterize these adaptive mechanisms. To provide(More)