Ratul Lahkar

Learn More
We define the logit dynamic for games with continuous strategy spaces and establish its fundamental properties , i.e. the existence, uniqueness and continuity of solutions. We apply the dynamic to the analysis of the Burdett and Judd (1983) model of price dispersion. Our objective is to assess the stability of the logit equilibrium corresponding to the(More)
We investigate a variety of connections between the projection dynamic and the replicator dynamic. At interior population states, the standard microfoundations for the replicator dynamic can be converted into foundations for the projection dynamic by replacing imitation of opponents with “revision driven by insecurity” and direct choice of alternative(More)
The projection dynamic is an evolutionary dynamic for population games. It is derived from a model of individual choice in which agents abandon their current strategies at rates inversely proportional to the strategies’ current levels of use. The dynamic admits a simple geometric definition, its rest points coincide with the Nash equilibria of the(More)
Every population game defines a vector field on the set of strategy distributions X. The projection dynamic maps each population game to a new vector field: namely, the one closest to the payoff vector field among those that never point outward from X. We investigate the geometric underpinnings of the projection dynamic, describe its basic game-theoretic(More)
We examine whether price dispersion is an equilibrium phenomenon or a cyclical phenomenon. We develop a finite strategy model of price dispersion based on the infinite strategy model of Burdett and Judd (1983). Adopting an evolutionary standpoint, we examine the stability of dispersed price equilibrium under perturbed best response dynamics. We conclude(More)
We study an evolutionary model in which strategy revision protocols are based on agent specific characteristics rather than wider social characteristics. We assume that agents are primed to play mixed strategies. At any time, the distribution of mixed strategies over agents in a population is described by a probability measure. In each round, a pair of(More)